Wechselwirkung Klima-Biosphäre

Die Biosphäre der Erde, vor allem die Vegetation, wird durch das Klima gesteuert. Die Vegetation wiederum beeinflusst das Klima durch zahlreiche biogeophysikalische und biogeochemische Prozesse. So pumpt beispielsweise ein borealer Wald Wasser aus dem Boden und speichert große Mengen an Kohlenstoff in Biomasse und Bodenstreu. Er absorbiert Sonneneinstrahlung an seiner Oberfläche, was insbesondere im Frühjahr einen großen Effekt hat, wenn Schneeflächen verdeckt werden. Langfristig gesehen verändert die Vegetation die Böden, schafft ihre eigene lokale Umgebung und beeinflusst das Klima weit über ihre eigenen Grenzen hinaus.

Wie stark sind die Wechselwirkungen zwischen der terrestrischen Biosphäre und dem Klima, wie etwa die Rückkopplung zwischen dem Kohlenstoffkreislauf und dem Klima (siehe Abbildung 1)? Könnten externe Einflüsse, wie z. B. eine CO2-bedingte Erwärmung oder die Abholzung von Wäldern, zu abrupten Veränderungen in natürlichen Ökosystemen führen, die sich in Niederschlags- und Temperaturveränderungen sowie in deren Extremen widerspiegeln? Um diese Fragen zu beantworten, entwickelt und verwendet unsere Gruppe Modelle unterschiedlicher Komplexität, von einfachen konzeptionellen Modellen bis hin zu hochentwickelten Erdsystemmodellen.

Trotz der fortschreitenden Abholzung der Wälder nimmt der Boden heute etwa 30 % der anthropogenen CO2-Emissionen auf. Diese enorme Leistung der Landbiosphäre für die Menschheit trägt zur Verlangsamung der globalen Erwärmung bei, aber die Kapazität des Bodens zur Aufnahme fossiler CO2-Emissionen ist begrenzt. Wenn keine fossilen Brennstoffe mehr emittiert werden, wird das Land immer noch etwas Kohlenstoff aufnehmen, aber in einem viel geringeren Ausmaß. Um das künftige Klima zu verstehen und zu prognostizieren, ist es sehr wichtig zu wissen, wie genau die Landbiosphäre auf Klima- und CO2-Veränderungen auf diesen Zeitskalen reagiert. 

Unsere Forschung

Die Wechselwirkungen zwischen Klima und Biosphäre sind ein umfangreiches Forschungsgebiet mit faszinierenden Beispielen aus der Vergangenheit (grüne Sahara, glaziale Zyklen), der Gegenwart (CO2-Düngung des Landes) und der Zukunft (Kohlenstoff-Klima-Rückkopplung). Unter den vielen Forschungsmöglichkeiten liegt der Schwerpunkt unserer Gruppe auf Prozessen, die das Klima auf Zeitskalen von Jahrzehnten und Jahrhunderten beeinflussen. Insbesondere die Ökosysteme in den hohen Breitengraden reagieren sehr empfindlich auf die stattfindenden Klimaänderungen und haben ein erhebliches Potenzial, das Klima durch veränderte CO2- und CH4-Flüsse zu beeinflussen. Physikalische Rückkopplungen zwischen der Hydrologie der Landoberfläche und dem Klima könnten die atmosphärischen und ozeanischen Zirkulationen über die Grenzen der Arktis hinaus erheblich verändern. Wie sieht die Zukunft der Arktis aus, wird sie trockener oder feuchter sein, und wie wirkt sie sich auf das globale Klima aus?

Permafrost und Kohlenstoffdynamik

Ökosysteme in den hohen Breiten dienten in den letzten Jahrtausenden als langsame, aber dauerhafte Kohlenstoffsenke und nehmen auch heute noch Kohlenstoff auf (z. B. Bruhwiler et al., 2021). Ein einzigartiges Merkmal dieser Region ist das Vorhandensein von dauerhaft gefrorenen Böden, die erhebliche Mengen an Kohlenstoff, der sich während der glazialen Zyklen angesammelt hat, aber auch Wasser in Form von Bodeneis enthalten. Die Arktis erwärmt sich doppelt so schnell wie die durchschnittliche Erwärmungsrate des gesamten Planeten. Was wird in Zukunft mit dem gefrorenen Kohlenstoff geschehen, und sind die Veränderungen des Permafrosts und des Kohlenstoffs unumkehrbar?

Der jüngste Sachstandsbericht des IPCC schätzt die Freisetzung aus Permafrostregionen auf 18 PgC (Unsicherheitsbereich 3,1-41 PgC) pro einen Grad globaler Temperaturerhöhung bis zum Jahr 2100. Die von unserer Gruppe durchgeführten Simulationen liegen innerhalb dieses Unsicherheitsbereichs. Wie viel ist das im Vergleich zu den Emissionen aus fossilen Brennstoffen? Die Kohlenstoffemissionen, die erforderlich sind, um die globale Temperatur im MPI-Erdsystemmodell um 1 °C zu erhöhen, liegen bei etwa 600 PgC (MacDougal et al., 2020). Zusätzliche CO2-Emissionen durch das Auftauen von Permafrostböden verstärken den Klimawandel um 2-10 % (Kleinen und Brovkin, 2018), was nicht unerheblich ist. Es kann jedoch nicht zu einem „Runaway“-Effekt führen, bei dem sich die Erwärmung des Klimas verstärkt und schließlich zur Verdunstung des gesamten flüssigen Wassers auf dem Planeten führt, ähnlich wie bei dem Klima auf der Venus. Für das Szenario RCP8.5 mit sehr hohen Emissionen wird ein stärkeres Tauwetter bis zum Jahr 2300 erwartet (siehe Abbildung 2).

Wechselwirkungen zwischen Prozessen an der Landoberfläche und dem Klima könnten zu dem Phänomen der mehrfachen Gleichgewichtszustände führen. Ein berühmtes Beispiel ist die Rückkopplung zwischen der atmosphärischen Zirkulation und der Vegetationsbedeckung in Nordafrika, die die erhebliche Begrünung der Sahara im mittleren Holozän erklären könnte. Diverse Studien deuten darauf hin, dass derzeit in Nordafrika sowohl der Wüsten- als auch der Grünzustand potenziell stabil sind und der Übergang zwischen ihnen ziemlich abrupt sein könnte (Link zu Martins Seite). Bei Permafrostböden könnten die Wechselwirkungen zwischen Bodentemperatur, Wasser und organischem Kohlenstoff zu zwei verschiedenen Zuständen führen: trockener, organisch karger, wärmerer Boden und feuchter, organisch reichhaltiger, kälterer Boden. Der Unterschied zwischen diesen beiden Zuständen könnte regional sehr groß sein (siehe Abbildung 3).

Ein weiteres Beispiel für alternative stationäre Zustände stammt aus der Analyse von Fernerkundungsdaten (Abis und Brovkin, Biogeosciences, 2017). Als wir den Zusammenhang zwischen der beobachteten Verteilung der Baumbedeckung in borealen Regionen und der mittleren jährlichen Niederschlagsmenge, der Mindesttemperatur, der Permafrostverteilung, der Bodenfeuchtigkeit, der Häufigkeit von Waldbränden und der Bodentextur untersucht haben, fanden wir Gebiete mit potenziell alternativen Baumbedeckungszuständen (Wald, gemischt, baumlos) unter denselben Umweltbedingungen. Diese Gebiete machen zwar nur einen kleinen Teil der borealen Fläche aus (ca. 5 %), entsprechen aber möglichen Übergangszonen mit einer geringeren Widerstandsfähigkeit gegenüber Störungen (siehe Abbildung 4).

 

Schließen der Skalierungslücke zwischen feinskaligen Prozessen und Erdsystemmodellen in der Arktis

Die arktische Landschaft besteht aus einer Mischung aus offenen Gewässern, Feuchtgebieten, Wald und Tundra. Aktuelle Erdsystemmodelle haben eine zu grobe räumliche Auflösung (ca. 100 km), um Prozesse auf einer Feinskala von wenigen Metern zu erfassen. Wie können wir mit dieser extremen Heterogenität der Landoberfläche umgehen? Um die Skalierungslücke zu schließen, entwickelt unsere Gruppe einen Upscaling-Ansatz, der Mikro-, Meso- und Makroskalen miteinander verbindet (siehe Abbildung 5). Wir erhöhen die Auflösung unseres Landoberflächenmodells ICON-Land/JSBACH bis auf wenige Kilometer und wollen es im Rahmen des kürzlich vom Europäischen Forschungsrat finanzierten Synergieprojekts Q-ARCTIC auf der panarktischen Skala betreiben. Wir arbeiten dabei mit Forschungsgruppen zusammen, die sich mit der Fernerkundung der Umgebung und der Vegetation in der Arktis (b.geos) sowie mit Beobachtungen auf lokaler Ebene und regionalen Inversionen der Treibhausgasflüsse (MPI-BGC) beschäftigen.

Prozesse auf einer feinen Skala sind in Modellen mit gröberer Auflösung stark parametrisiert. Betrachten wir beispielsweise sehr kleine Gewässer oder Teiche, so tragen sie unverhältnismäßig stark zu den arktischen Methanemissionen bei. Die Methankonzentrationen in Teichen schwanken stark, was ein prozessbasiertes Verständnis der Variabilität erfordert. Zu diesem Zweck kategorisierten Rehder et al. (2021) polygonale Tundra-Teiche im Lena-Flussdelta in drei geomorphologische Typen mit deutlichen Unterschieden bei den Antriebsfaktoren auf die Methankonzentrationen: Teiche mit polygonalem Zentrum, Teiche mit Eiskante und größere zusammenhängende polygonale Teiche (Abbildung 6, links und Mitte). Sie fanden heraus, dass die Methankonzentrationen negativ mit der Größe des Teiches korrelieren: je kleiner der Teich, desto höher die Methankonzentrationen an der Oberfläche (Abbildung 6, rechts). Außerdem konnte kein einziger Antriebsfaktor (wie Windgeschwindigkeit, Wassertemperatur oder Wassertiefe) die Variabilität über alle Teichtypen hinweg erklären, was darauf hindeutet, dass komplexere Upscaling-Methoden wie die prozessbasierte Modellierung erforderlich sind.

Modellierung von Feuchtgebieten und des Methankreislaufs

Methan ist ein starkes Treibhausgas, das unter anaeroben Bedingungen, insbesondere in überschwemmten Böden (Feuchtgebieten), entsteht. Obwohl die Rückkopplung zwischen Klima und Methan nicht so stark ist wie die zwischen CO2 und Temperatur, führen steigende CO2-Konzentrationen und Veränderungen in der Oberflächenhydrologie in Zukunftsszenarien zu einem erheblichen Anstieg der Emissionen aus Feuchtgebieten in die Atmosphäre in . Diese Veränderungen werden in den aktuellen Zukunftsprojektionen unterschätzt (siehe Abbildung 7). Natürliche Methanquellen werden auch in den Klimastabilisierungsszenarien wichtig, in denen der globale Temperaturanstieg im Vergleich zur vorindustriellen Zeit unter einem bestimmten Schwellenwert wie 1,5 oder 2°C gehalten wird.

Könnte der arktische Schelf eine Quelle für große Methanfreisetzungen werden?

Kurz gesagt: Das ist sehr unwahrscheinlich, aber wir können es nicht völlig ausschließen. Unsere Gruppe ist an einem gemeinsamen Projekt mit den Gruppen der marinen Biogeochemie beteiligt, das sich mit der möglichen Freisetzung von Methan durch das Auftauen des unterseeischen Permafrostbodens  befasst.

Während der Eiszeiten war der flache arktische Schelf den eisigen Temperaturen ausgesetzt, wodurch sich in kurzen, aber produktiven Sommern organisches Material ansammelte. Nach dem Abschmelzen der Eisschilde wurde das Schelf überflutet, und die gefrorenen Sedimente tauen nun aufgrund des geothermischen Wärmeflusses langsam von oben, aber auch von unten auf. In Erwärmungsszenarien erwärmt sich der Meeresboden und das Eis in den Sedimenten schmilzt, so dass Mikroben die zuvor gefrorenen organischen Stoffe zersetzen können. Dieser Prozess führt zu einer In-situ-Produktion von Methan, von dem ein Teil von methanfressenden Mikroben in den Sedimenten abgebaut werden könnte, während ein anderer Teil in die Atmosphäre entweichen kann. Je stärker die Erwärmung ist, desto mehr Eis schmilzt in den Sedimenten (siehe Abbildung 8). Dieser Prozess verläuft sehr langsam, aber unter bestimmten Szenarien könnten die Methanemissionen des Schelfs bis zum Jahr 2300 höher sein als die Methanemissionen der borealen Feuchtgebiete (hierzu sind Publikationen in Arbeit).

Gruppenmitglieder und Publikationen

Name
Email
Position
Telefon
Raum
Gruppenleiter*in
B 327
Wissenschaftler*in
SK 1.06
Wissenschaftler*in
B 316
Wiss. Programmierer*in
B 319
Wissenschaftler*in
B 331
Doktorand*in
B 307
Wissenschaftler*in
B316
Wissenschaftler*in
B 318
Wissenschaftler*in
Bu53 328
  • Bustamante, M., Roy, J., Ospina, D., Achakulwisut, P., Aggarwal, A., Bastos, A., Broadgate, W., Canadell, J., Carr, E., Chen, D., Cleugh, H., Ebi, K., Edwards, C., Farbotko, C., Fernández-Martínez, M., Frölicher, T., Fuss, S., Geden, O., Gruber, N., Harrington, L., Hauck, J., Hausfather, Z., Hebden, S., Hebinck, A., Huq, S., Huss, M., Jamero, M., Juhola, S., Kumarasinghe, N., Lwasa, S., Mallick, B., Martin, M., McGreevy, S., Mirazo, P., Mukherji, A., Muttitt, G., Nemet, G., Obura, D., Okereke, C., Oliver, T., Orlove, B., Ouedraogo, N., Patra, P., Pelling, M., Pereira, L., Persson, Å., Pongratz, J., Prakash, A., Rammig, A., Raymond, C., Redman, A., Reveco, C., Rockström, J., Rodrigues, R., Rounce, D., Schipper, E., Schlosser, P., Selomane, O., Semieniuk, G., Shin, Y.-J., Siddiqui, T., Singh, V., Sioen, G., Sokona, Y., Stammer, D., Steinert, N., Suk, S., Sutton, R., Thalheimer, L., Thompson, V., Trencher, G., Van Der Geest, K., Werners, S., Wübbelmann, T., Wunderling, N., Yin, J., Zickfeld, K. & Zscheischler, J. (2024). Ten new insights in climate science 2023. Global Sustainability, 7: e19. doi:10.1017/sus.2023.25 [publisher-version]
  • Creel, R., Miessner, F., Wilkenskjeld, S., Austermann, J. & Overduin, P. (2024). Glacial isostatic adjustment reduces past and future Arctic subsea permafrost. Nature Communications, 15: 3232. doi:10.1038/s41467-024-45906-8 [publisher-version]
  • de Hertog, S., Lopez-Fabara, C., van der Ent, R., Keune, J., Miralles, D., Portmann, R., Schemm, S., Havermann, F., Guo, S., Luo, F., Manola, I., Lejeune, Q., Pongratz, J., Schleussner, C.-F., Seneviratne, S. & Thiery, W. (2024). Effects of idealized land cover and land management changes on the atmospheric water cycle. Earth System Dynamics, 15, 265-291. doi:10.5194/esd-15-265-2024 [publisher-version]
  • de Vrese, P., Stacke, T., Gayler, V. & Brovkin, V. (2024). Permafrost cloud feedback may amplify climate change. Geophysical Research Letters, 51: e2024GL109034. doi:10.1029/2024GL109034 [publisher-version]
  • García-Pereira, F., González-Rouco, J., Schmid, T., Melo-Aguilar, C., Vegas-Cañas, C., Steinert, N., Roldán-Gómez, P., Cuesta-Valero, F., García-García, A., Beltrami, H. & de Vrese, P. (2024). Thermodynamic and hydrological drivers of the soil and bedrock thermal regimes in central Spain. Soil, 10, 1-21. doi:10.5194/egusphere-2023-462 [publisher-version]
  • García-Pereira, F., González-Rouco, J., Melo-Aguilar, C., Steinert, N., García-Bustamante, E., de Vrese, P., Jungclaus, J., Lorenz, S., Hagemann, S., Cuesta-Valero, F., García-García, A. & Beltrami, H. (2024). First comprehensive assessment of industrial-era land heat uptake from multiple sources. Under open review for Earth System Dynamics. Earth System Dynamics, 15, 547-564. doi:10.5194/esd-15-547-2024 [copyright-transfer-agreement]
  • Goosse, H., Brovkin, V., Meissner, K., Menviel, L., Mouchet, A., Muscheler, R. & Nilson, A. (2024). Atmospheric D14C in the northern and southern hemisphere over the past two millennia: role of production rate, southern hemisphere westerly winds and ocean circulation changes. Quaternary Science Reviews, 326: 108502. doi:10.1016/j.quascirev.2024.108502
  • Heinicke, S., Volkholz, J., Schewe, J., Gosling, S., Müller Schmied, H., Zimmermann, S., Mengel, M., Sauer, I., Burek, P., Chang, J., Kou-Giesbrecht, S., Grillakis, M., Guillaumot, L., Hanasaki, N., Koutroulis, A., Otta, K., Qi, W., Satoh, Y., Stacke, T., Yokohata, T. & Frieler, K. (2024). Global hydrological models continue to overestimate river discharge. Environmental Research Letters, 19: 074005. doi:10.1088/1748-9326/ad52b0 [publisher-version]
  • Nyawira, S., Herold, M., Mulatu, K., Roman-Cuesta, R., Houghton, R., Grassi, G., Pongratz, J., Grasser, T. & Verchot, L. (2024). Pantropical CO2 emissions and removals for the AFOLU sector in the period 1990-2018. Mitigation and Adaptation Strategies for Global Change, 29: 13. doi:10.1007/s11027-023-10096-z [publisher-version]
  • Rockström, J., Kotzé, L., Milutinovic, S., Biermann, F., Brovkin, V., Donges, J., Ebbeson, J., French, D., Gupta, J., Kim, R., Lenton, T., Lenzi, D., Nakicenovic, N., Neumann, B., Schuppert, F., Winkelmann, R., Bosselmann, K., Folke, C., Lucht, W., Schlosberg, D., Richardson, K. & Steffen, W. (2024). The planetary commons: A new paradigm for safeguarding Earth- regulating systems in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 121. doi:10.1073/pnas.2301531121 [publisher-version][supplementary-material]
  • Rosan, T., Sitch, S., O’Sullivan, M., Basso, L., Wilson, C., Silva, C., Gloor, E., Fawcett, D., Heinrich, V., Souza, J., Bezerra, F., von Randow, C., Mercado, L., Gatti, L., Wiltshire, A., Friedlingstein, P., Pongratz, J., Schwingshackl, C., Williams, M., Smallman, L., Knauer, J., Arora, V., Kennedy, D., Tian, H., Yuan, W., Jain, A., Falk, S., Poulter, B., Arneth, A., Sun, Q., Zaehle, S., Walker, A., Kato, E., Yue, X., Bastos, A., Ciais, P., Wigneron, J.-P., Albergel, C. & Aragão, L. (2024). Synthesis of the land carbon fluxes of the Amazon region between 2010 and 2020. Communications Earth and Environment, 5: 46. doi:10.1038/s43247-024-01205-0 [publisher-version]
  • Schädel, C., Rogers, B., Lawrence , D., Koven , C., Brovkin, V., Burke, E., Genet, H., Huntzinger, D., Jafarov, E., McGuire, A., Riley, W. & Natali, S. (2024). Earth system models must include permafrost carbon processes. Nature Climate Change. doi:10.1038/s41558-023-01909-9
  • Shihora, L., Liu, Z., Balidakis, K., Wilms, J., Dahle, C., Flechtner, F., Dill, R. & Dobslaw, H. (2024). Accounting for residual errors in atmosphere–ocean background models applied in satellite gravimetry. Journal of Geodesy, 98: 27. doi:10.1007/s00190-024-01832-7 [publisher-version]
  • Son, R., Stacke, T., Gayler, V., Nabel, J., Schnur, R., Silva, L., Requena Mesa, C., Winkler, A., Hantson, S., Zaehle, S., Weber, U. & Carvalhais, N. (2024). Integration of a deep-learning-based fire model into a global land surface model. Journal of Advances in Modeling Earth Systems, 16: e2023MS003710. doi:10.1029/2023MS003710 [publisher-version]
  • Steinert, N., Cuesta‐Valero, F., García‐Pereira, F., de Vrese, P., Melo Aguilar, C., García‐Bustamante, E., Jungclaus, J. & González‐Rouco, J. (2024). Underestimated land heat uptake alters the global energy distribution in CMIP6 climate models. Geophysical Research Letters, 51: e2023GL107613. doi:10.1029/2023GL107613 [publisher-version][supplementary-material]
  • Torres Mendonca, G., Reick, C. & Pongratz, J. (2024). Timescale dependence of airborne fraction and underlying climate-carbon-cycle feedbacks for weak perturbations in CMIP5 models. Biogeosciences, 21, 1923-1960. doi:10.5194/bg-21-1923-2024 [supplementary-material][publisher-version]
  • Weitzel, N., Andres, H., Baudouin, J.-P., Kapsch, M.-L., Mikolajewicz, U., Jonkers, L., Bothe, O., Ziegler, E., Kleinen, T., Paul, A. & Rehfeld, K. (2024). Towards spatio-temporal comparison of simulated and reconstructed sea surface temperatures for the last deglaciation. Climate of the Past, 20, 865-890. doi:10.5194/cp-20-865-2024 [publisher-version][supplementary-material]
  • Wunderling, N., von der Heydt, A., Aksenov, Y., Barker, S., Bastiaansen, R., Brovkin, V., Brunetti, M., Couplet, V., Kleinen, T., Lear, C., Lohmann, J., Roman-Cuesta, R., Sinet, S., Swingedouw, D., Winkelmann, R., Anand, P., Barichivich, J., Bathiany, S., Baudena, M., Bruun, J., Chiessi, C., Coxall, H., Docquier, D., Dönges, J., Falkena, S., Klose, A., Obura, D., Rocha, J., Rynders, S., Steinert, N. & Willeit, M. (2024). Climate tipping point interactions and cascades: a review. Earth System Dynamics, 15, 41-74. doi:10.5194/esd-15-41-2024 [publisher-version]
  • Chang, K.-Y., Riley, W., Collier, N., McNicol, G., Fluet-Chouinard, E., Knox, S., Delwiche, K., Jackson, R., Poulter, B., Saunois, M., Chandra, N., Gedney, N., Ishizawa, M., Ito, A., Joos, F., Kleinen, T., Maggi, F., McNorton, J., Melton, J., Miller, P., Niwa, Y., Pasut, C., Patra, P., Peng, C., Peng, S., Segers, A., Tian, H., Tsuruta, A., Yao, Y., Yin, Y., Zhang, W., Zhang, Z., Zhu, Q., Zhu, Q. & Zhuang, Q. (2023). Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates. Global Change Biology: early view. doi:10.1111/gcb.16755
  • De Hertog, S., Havermann, F., Vanderkelen, I., Guo, S., Luo, F., Manola, I., Coumou, D., Davin, E., Duveiller, G., Lejeune, Q., Pongratz, J., Schleussner, C.-F., Seneviratne, S. & Thiery, W. (2023). The biogeophysical effects of idealized land cover and land management changes in Earth system models. Earth System Dynamics, 14, 629-667. doi:10.5194/esd-14-629-2023 [publisher-version]
  • de Vrese, P., Beckebanze, L., Galera, L., Holl, D., Kleinen, T., Kutzbach, L., Rehder, Z. & Brovkin, V. (2023). Sensitivity of Arctic CH4 emissions to landscape wetness diminished by atmospheric feedbacks. Nature Climate Change. doi:10.1038/s41558-023-01715-3 [publisher-version][supplementary-material]
  • de Vrese, P., Georgievski, G., Gonzalez Rouco, J., Notz, D., Stacke, T., Steinert, N., Wilkenskjeld, S. & Brovkin, V. (2023). Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and Subarctic climate. The Cryosphere, 17, 2095-2118. doi:10.5194/tc-17-2095-2023 [publisher-version]
  • Dunkl, I., Lovenduski, N., Collalti, A., Arora, V., Ilyina, T. & Brovkin, V. (2023). Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it. Biogeosciences, 20, 3523-3538. doi:10.5194/bg-20-3523-2023 [pre-print][supplementary-material][publisher-version]
  • Forster, P., Smith, C., Walsh, T., Lamb, W., Palmer, M., von Schuckmann, K., Trewin, B., Allen, M., Andrew, R., Birt, A., Borger, A., Boyer, T., Broersma, J., Cheng, L., Dentener, F., Friedlingstein, P., Gillett, N., Gutiérrez, J., Gütschow, J., Hauser, M., Hall, B., Ishii, M., Jenkins, S., Lamboll, R., Lan, X., Lee, J.-Y., Morice, C., Kadow, C., Kennedy, J., Killick, R., Minx, J., Naik, V., Peters, G., Pirani, A., Pongratz, J., Ribes, A., Rogelj, J., Rosen, D., Schleussner, C.-F., Seneviratne, S., Szopa, S., Thorne, P., Rohde, R., Rojas Corradi, M., Schumacher, D., Vose, R., Zickfeld, K., Zhang, X., Masson-Delmotte, V. & Zhai, P. (2023). Indicators of global climate change 2022: Annual update of large-scale indicators of the state of the climate system and the human influence. Earth System Science Data, 15, 2295-2327. doi:10.5194/essd-15-2295-202 [publisher-version][supplementary-material]
  • Friedlingstein, P., O'Sullivan, M., Jones, M., Andrew, R., Bakker, D., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I., Peters, G., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J., Ciais, P., Jackson, R., Alin, S., Anthoni, P., Barbero, L., Bates, N., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I., Cadule, P., Chamberlain, M., Chandra, N., Chau, T.-T., Chevallier, F., Chini, L., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R., Feng, L., Ford, D., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R., Hurtt, G., Iida, Y., Ilyina, T., Jacobson, A., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R., Kennedy, D., Goldewijk, K., Knauer, J., Korsbakken, J., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P., McKinley, G., Meyer, G., Morgan, E., Munro, D., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Olsen, A., Omar, A., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T., Schwinger, J., Séférian, R., Smallman, T., Smith, S., Sospedra-Alfonso, R., Sun, Q., Sutton, A., Sweeney, C., Takao, S., Tans, P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J. & Zheng, B. (2023). Global Carbon Budget 2023. Earth System Science Data, 15, 5301-5369. doi:10.5194/essd-15-5301-2023 [publisher-version]
  • Grassi, G., Schwingshackl, C., Gasser, T., Houghton, R., Sitch, S., Canadell, J., Cescatti, A., Ciais, P., Federici, S., Friedlingstein, P., Kurz, W., Sanchez, M., Viñas, R., Alkama, R., Ceccherini, G., Kato, E., Kennedy, D., Knauer, J., Korosuo, A., McGrath, M., Nabel, J., Poulter, B., Rossi, S., Walker, A., Yuan, W., Yue, X. & Pongratz, J. (2023). Harmonising the land-use flux estimates of global models and national inventories for 2000–2020. Earth System Science Data, 15, 1093-1114. doi:10.5194/essd-15-1093-2023 [publisher-version][supplementary-material]
  • Hagemann, S. & Stacke, T. (2023). Complementing ERA5 and E-OBS with high-resolution river discharge over Europe. Oceanologia, 65, 230-248. doi:10.1016/j.oceano.2022.07.003 [publisher-version]
  • Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S., Behravesh, M., Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R., Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M., Gutjahr, O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger, T., Naumann, A., Paccini, L., Peinado, A., Praturi, D., Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H., Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C., von Storch, J., Vogel, R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J. & Stevens, B. (2023). ICON-Sapphire: simulating the components of the Earth System and their interactions at kilometer and subkilometer scales. Geoscientific Model Development, 16, 779-811. doi:10.5194/gmd-16-779-2023 [publisher-version]
  • Ito, A., Li, T., Melton, J., Tian, H., Kleinen, T., Wang, W., Zhang, Z., Joos, F., Ciais, P., Hopcroft, P., Beerling, D., Liu, X., Zhuang, Q., Zhu, Q., Peng, C., Cheng, K.-Y., Fluet-Chouinard, E., McNicol, G., Patra, P., Poulter, S., Sitch, B., Riley, W. & Zhu, Q. (2023). Cold-season methane fluxes simulated by GCP-CH4 models. Geophysical Research Letters, 50: e2023GL103037. doi:10.1029/2023GL103037 [publisher-version]
  • Jones, M., Peters, G., Gasser, T., Andrew, R., Schwingshackl, C., Gütschow, J., Houghton, R., Friedlingstein, P., Pongratz, J. & Le Quéré, C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10: 155. doi:10.1038/s41597-023-02041-1 [publisher-version]
  • Kleinen, T., Gromov, S., Steil, B. & Brovkin, V. (2023). Atmospheric methane since the last glacial maximum was driven by wetland sources. Climate of the Past, 19, 1081-1099. doi:10.5194/cp-19-1081-2023 [supplementary-material][publisher-version]
  • Köhl, M., Pagnone, A., Brovkin, V. & Neuburger, M. (2023). Physical process assessments - Amazon Forest dieback. In Engels, A., Marotzke, J., Gonçalves Gresse, E., López-Rivera, A., Pagnone, A. & Wilkens, J. (Eds.), Hamburg Climate Futures Outlook 2023: The plausibility of a 1.5°C limit to global warming - social drivers and physical processes (pp.152-157). Hamburg: Cluster of Excellence Climate, Climatic Change, and Society (CLICCS). [publisher-version]
  • Kutzbach, L., Brovkin, V., Beer, C., Kleinen, T., de Vrese, P., Rödder, S. & Knoblauch, C. (2023). Physical process assessments - Permafrost thaw: effects on the remaining carbon budget. In Engels, A., Marotzke, J., Gonçalves Gresse, E., López-Rivera, A., Pagnone, A. & Wilkens , A. (Eds.), Hamburg Climate Futures Outlook 2023: The plausibility of a 1.5°C limit to global warming - social drivers and physical processes (pp.140-144). Hamburg: Cluster of Excellence Climate, Climatic Change, and Society (CLICCS). [publisher-version]
  • Lapola, D., Pinho, P., Barlow, J., Aragão, L., Berenguer, E., Carmenta, R., Liddy, H., Seixas, H., Silva, C., Silva, C., Alencar, A., Anderson, L., Armenteras, D., Brovkin, V., Calders, K., Chambers, J., Chini, L., Costa, M., Faria, B., Fearnside, P., Ferreira, J., Gatti, L., Gutierrez-Velez, V., Han, Z., Hibbard, K., Koven, C., Lawrence, P., Pongratz, J., Portela, B., Rounsevell, M., Ruane, A., Schaldach, R., da Silva, S., von Randow, C. & Walker, W. (2023). The drivers and impacts of Amazon forest degradation. Science, 379: eabp8622. doi:10.1126/science.abp8622
  • Li, H., Ilyina, T., Loughran, T., Spring, A. & Pongratz, J. (2023). Reconstructions and predictions of the global carbon budget with an emission-driven Earth System Model. Earth System Dynamics, 14, 101-119. doi:10.5194/esd-14-101-2023 [supplementary-material][publisher-version]
  • Loughran, T., Ziehn, T., Law, R., Canadell, J., Pongratz, J., Liddicoat, S., Hajima, T., Ito, A., Lawrence, D. & Arora, V. (2023). Limited mitigation potential of forestation under a high emissions scenario: results from multi-model and single model ensembles. Journal of Geophysical Research: Biogeosciences, 128: e2023JG007605. doi:10.1029/2023JG007605 [publisher-version]
  • McGrath, M., Petrescu, A., Peylin, P., Andrew, R., Matthews, B., Dentener, F., Balkovič, J., Bastrikov, V., Becker, M., Broquet, G., Ciais, P., Fortems-Cheiney, A., Ganzenmüller, R., Grassi, G., Harris, I., Jones, M., Knauer, J., Kuhnert, M., Monteil, G., Munassar, S., Palmer, P., Peters, G., Qiu, C., Schelhaas, M.-J., Tarasova, O., Vizzarri, M., Winkler, K., Balsamo, G., Berchet, A., Briggs, P., Brockmann, P., Chevallier, F., Conchedda, G., Crippa, M., Dellaert, S., Denier Van Der Gon, H., Filipek, S., Friedlingstein, P., Fuchs, R., Gauss, M., Gerbig, C., Guizzardi, D., Günther, D., Houghton, R., Janssens-Maenhout, G., Lauerwald, R., Lerink, B., Luijkx, I., Moulas, G., Muntean, M., Nabuurs, G.-J., Paquirissamy, A., Perugini, L., Peters, W., Pilli, R., Pongratz, J., Regnier, P., Scholze, M., Serengil, Y., Smith, P., Solazzo, E., Thompson, R., Tubiello, F., Vesala, T. & Walther, S. (2023). The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990-2020. Earth System Science Data, 15, 4295-4370. doi:10.5194/essd-15-4295-2023 [publisher-version]
  • Miesner, F., Overduin, P., Grosse, G., Strauss, J., Langer, M., Westermann, S., von Deimling, T., Brovkin, V. & Arndt, S. (2023). Subsea permafrost organic carbon stocks are large and of dominantly low reactivity. Scientific Reports, 13: 9425. doi:10.1038/s41598-023-36471-z [publisher-version]
  • Nath, S., Gudmundsson, L., Schwaab, J., Duveiller, G., De Hertog, S., Guo, S., Havermann, F., Luo, F., Manola, I., Pongratz, J., Seneviratne, S., Schleussner, C., Thiery, W. & Lejeune, Q. (2023). TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change. Geoscientific Model Development, 16, 4283-4313. doi:10.5194/gmd-16-4283-2023 [publisher-version]
  • Orlov, A., De Hertog, S., Havermann, F., Guo, S., Luo, F., Manola, I., Thiery, W., Lejeune, Q., Pongratz, J., Humpenöder, F., Windisch, M., Nath, S., Popp, A. & Schleussner, C.-F. (2023). Changes in land cover and management affect heat stress and labor capacity. Earth's Future, 11: e2022EF002909. doi:10.1029/2022EF002909 [publisher-version]
  • Orlov, A., Aunan, K., Mistry, M., Lejeune, Q., Pongratz, J., Thiery, W., Gasparrini, A., Reed, E. & Schleussner, C.-F. (2023). Neglected implications of land-use and land-cover changes on the climate-health nexus. Environmental Research Letters, 18: 061005. doi:10.1088/1748-9326/acd799 [publisher-version]
  • Rehder, Z., Kleinen, T., Kutzbach, L., Stepanenko, V., Langer, M. & Brovkin, V. (2023). Simulated methane emissions from Arctic ponds are highly sensitive to warming. Biogeosciences, 20, 2837-2855. doi:10.5194/bg-20-2837-2023 [supplementary-material][publisher-version][supplementary-material]
  • Schlund, M., Hassler, B., Lauer, A., Andela, B., Jöckel, P., Kazeroni, R., Tomas, S., Medeiros, B., Predoi, V., Sénési, S., Servonnat, J., Stacke, T., Vegas-Regidor, J., Zimmermann, K. & Eyring, V. (2023). Evaluation of native Earth system model output with ESMValTool v2.6.0. Geoscientific Model Development, 16, 315-333. doi:10.5194/gmd-16-315-2023 [publisher-version]
  • Willeit, M., Ilyina, T., Liu, B., Heinze, C., Perrette, M., Heinemann, M., Dalmonech, D., Brovkin, V., Munhoven, G., Boerker, J., Hartmann, J., Mujalli, G. & Ganopolski, A. (2023). The earth system model CLIMBER-X v1.0 - Part 2: The global carbon cycle. Geoscientific Model Development, 16, 3501-3534. doi:10.5194/gmd-16-3501-2023 [publisher-version]
  • Winkler, K., Yang, H., Ganzenmüller, R., Fuchs, R., Ceccherini, G., Duveiller, G., Grassi, G., Pongratz, J., Bastos, A., Shvidenko, A., Araza, A., Herold, M., Wigneron, J.-P. & Ciais, P. (2023). Changes in land use and management led to a decline in Eastern Europe’s terrestrial carbon sink. Communications Earth and Environment, 4: 237. doi:10.1038/s43247-023-00893-4 [publisher-version]
  • Bastos, A., Ciais, P., Sitch, S., Aragão, L., Chevallier, F., Fawcett, D., Rosan, T., Saunois, M., Günther, D., Perugini, L., Robert, C., Deng, Z., Pongratz, J., Ganzenmüller, R., Fuchs, R., Winkler, K., Zaehle, S. & Albergel, C. (2022). On the use of earth observation to support estimates of national greenhouse gas emissions and sinks for the global stocktake process: lessons learned from ESA-CCI RECCAP2. Carbon Balance and Management, 17: 15. doi:10.1186/s13021-022-00214-w [publisher-version][supplementary-material]
  • Beckebanze, L., Rehder, Z., Holl, D., Wille, C., Mirbach, C. & Kutzbach, L. (2022). Ignoring carbon emissions from thermokarst ponds results in overestimation of tundra net carbon uptake. Biogeosciences, 19, 1225-1244. doi:10.5194/bg-19-1225-2022 [publisher-version]
  • Brovkin, V. & Gayler, V. (2022). Rückkopplungen zwischen Klima und globalem Kohlenstoffkreislauf. Promet, 105(Grundlagen des globalen Kohlenstoffkreislaufs), 61-68. doi:10.5676/DWD_pub/promet_105_08 [publisher-version]
  • Bultan, S., Nabel, J., Hartung, K., Ganzenmüller, R., Xu, L., Saatchi, S. & Pongratz, J. (2022). Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration. Nature Communications, 13: 5516. doi:10.1038/s41467-022-32456-0 [publisher-version][supplementary-material]
  • Dallmeyer, A., Kleinen, T., Claussen, M., Weitzel, N., Cao, X. & Herzschuh, U. (2022). The deglacial forest conundrum. Nature Communications, 13: 6035. doi:10.1038/s41467-022-33646-6 [supplementary-material][multimedia][publisher-version][supplementary-material]
  • Dohner, J., Birner, B., Schwartzman, A., Pongratz, J. & Keeling, R. (2022). Using the atmospheric CO2 growth rate to constrain the CO2 flux from land use and land cover change since 1900. Global Change Biology, 28, 7327-7339. doi:10.1111/gcb.16396 [publisher-version]
  • Dunkl, I. & Ließ, M. (2022). On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization. Soil, 8, 541-558. doi:10.5194/soil-8-541-2022 [publisher-version]
  • Duque-Villegas, M., Claussen, M., Brovkin, V. & Kleinen, T. (2022). Effects of orbital forcing, greenhouse gases and ice sheets on Saharan greening in past and future multi-millennia. Climate of the Past, 18, 1897-1914. doi:10.5194/cp-18-1897-2022 [supplementary-material][publisher-version]
  • Friedlingstein, P., O'Sullivan, M., Jones, M., Andrew, R., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I., Olsen, A., Peters, G., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J., Ciais, P., Jackson, R., Alin, S., Alkama, R., Arneth, A., Arora, V., Bates, N., Becker, M., Bellouin, N., Bittig, H., Bopp, L., Chevallier, F., Chini, L., Cronin, M., Evans, W., Falk, S., Feely, R., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R., Hurtt, G., Iida, Y., Ilyina, T., Jain, A., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Goldewijk, K., Knauer, J., Korsbakken, J., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M., Metzl, N., Monacci, N., Munro, D., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T., Schwinger, J., Séférian, R., Shutler, J., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A., Sweeney, C., Takao, S., Tanhua, T., Tans, P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G., Walker, A., Wanninkhof, R., Whitehead, C., Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J. & Zheng, B. (2022). Global carbon budget 2022. Earth System Science Data, 14, 4811-4900. doi:10.5194/essd-14-4811-2022 [publisher-version]
  • Friedlingstein, P., Jones, M., O'Sullivan, M., Andrew, R., Bakker, D., Hauck, J., Le Quéré, C., Peters, G., Peters, W., Pongratz, J., Sitch, S., Canadell, J., Ciais, P., Jackson, R., Alin, S., Anthoni, P., Bates, N., Becker, M., Bellouin, N., Bopp, L., Chau, T., Chevallier, F., Chini, L., Cronin, M., Currie, K., Decharme, B., Djeutchouang, L., Dou, X., Evans, W., Feely, R., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R., Hurtt, G., Iida, Y., Ilyina, T., Luijkx, I., Jain, A., Jones, S., Kato, E., Kennedy, D., Goldewijk, K., Knauer, J., Korsbakken, J., Körtzinger, A., Landschützer, P., Lauvset, S., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P., Melton, J., Munro, D., Nabel, J., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A., Sweeney, C., Tanhua, T., Tans, P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A., Willis, D., Wiltshire, A., Yuan, W., Yue, C., Yue, X., Zaehle, S. & Zeng, J. (2022). Global carbon budget 2021. Earth System Science Data, 14, 1917-2005. doi:10.5194/essd-14-1917-2022 [publisher-version]
  • Ganzenmueller, R., Bultan, S., Winkler, K., Fuchs, R., Zabel, F. & Pongratz, J. (2022). Land-use change emissions based on high-resolution activity data substantially lower than previously estimated. Environmental Research Letters, 17: 064050. doi:10.1088/1748-9326/ac70d8 [publisher-version][supplementary-material]
  • Goosse, H., Barriat, P.-Y., Brovkin, V., Klein, F., Meissner, K., Menviel, L. & Mouchet, A. (2022). Changes in atmospheric CO2 concentration over the past two millennia: contribution of climate variability, land-use and Southern Ocean dynamics. Climate Dynamics, 58, 2957-2979. doi:10.1007/s00382-021-06078-z
  • Hardouin, L., Delire, C., Decharme, B., M.Lawrence, D., Nabel, J., Brovkin, V., Collier, N., Fisher, R., Hoffman, F., Koven, C., Seferian, R. & Stacke, T. (2022). Uncertainty in land carbon budget simulated by terrestrial biosphere models: the role of atmospheric forcing. Environmental Research Letters, 17: 094033. doi:10.1088/1748-9326/ac888d [publisher-version]
  • Hong, C., Zhao, H., Qin, Y., Zhang, Q., Burney, J., Pongratz, J., Hartung, K., Moore, F. & Davis, S. (2022). Land-use emissions embodied in international trade. Science, 376, 597-603. doi:10.1126/science.abj1572
  • Humpenöder, F., Popp, A., Schleussner, C.-F., Orlov, A., Windisch, M., Menke, I., Pongratz, J., Havermann, F., Thiery, W., Luo, F., v. Jeetze, P., Dietrich, J., Lotze-Campen, H., Weindl, I. & Lejeune, Q. (2022). Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. Nature Communications, 13: 7453. doi:10.1038/s41467-022-35114-7 [publisher-version]
  • Jungclaus, J., Lorenz, S., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crueger, T., de Vrese, P., Gayler, V., Giorgetta, M., Gutjahr, O., Haak, H., Hagemann , S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W., Nabel, J., Notz, D., Pohlmann, H., Putrasahan, D., Raddatz, T., Ramme, L., Redler, R., Reick, C., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B., Marotzke, J. & Claussen, M. (2022). The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 14: e2021MS002813. doi:10.1029/2021MS002813 [publisher-version]
  • Katzenberger, A., Levermann, A., Schewe, J. & Pongratz, J. (2022). Intensification of very wet monsoon seasons in India under global warming. Geophysical Research Letters, 49: e2022GL098856. doi:10.1029/2022GL098856 [publisher-version]
  • Kondo, M., Sitch, S., Ciais, P., Achard, F., Kato, E., Pongratz, J., Houghton, R., Canadell, J., Patra, P., Friedlingstein, P., Li, W., Anthoni, P., Arneth, A., Chevallier, F., Ganzenmüller, R., Harper, A., Jain, A., Koven, C., Lienert, S., Lombardozzi, D., Maki, T., Nabel, J., Nakamura, T., Niwa, Y., Peylin, P., Poulter, B., Pugh, T., Rödenbeck, C., Saeki, T., Stocker, B., Viovy, N., Wiltshire, A. & Zaehle, S. (2022). Are land-use change emissions in Southeast Asia decreasing or increasing. Global Change Biology, 39: e2020GB006909. doi:10.1029/2020GB006909 [publisher-version]
  • Lawal, S., Sitch, S., Lombardozzi, D., Nabel, J., Wey, H.-W., Friedlingstein, P., Tian, H. & Hewitson, B. (2022). Investigating the response of leaf area index to droughts in southern African vegetation using observations and model-simulations. Hydrology and Earth System Sciences, 26, 2045-2071. doi:10.5194/hess-26-2045-2022 [publisher-version][supplementary-material]
  • Merz, N., Hubig, A., Kleinen, T., Therre, S., Kaufmann, G. & Frank, N. (2022). How the climate shapes stalagmites – A comparative study of model and speleothem at the Sofular Cave, Northern Turkey. Frontiers in Earth Science, 10: 969211. doi:10.3389/feart.2022.969211 [publisher-version][supplementary-material]
  • Nielsen, D., Pieper, P., Barkhordarian, A., Overduin, P., Ilyina, T., Brovkin, V., Baehr, J. & Dobrynin, M. (2022). Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nature Climate Change. doi:10.1038/s41558-022-01281-0 [publisher-version]
  • O’Sullivan, M., Friedlingstein, P., Sitch, S., Anthoni, P., Arneth, A., Arora, V., Bastrikov, V., Delire, C., Goll, D., Jain, A., Kato, E., Kennedy, D., Knauer, J., Lienert, S., Lombardozzi, D., McGuire, P., Melton, J., Nabel, J., Pongratz, J., Poulter, B., Séférian, R., Tian, H., Vuichard, N., Walker, A., Yuan, W., Yue, X. & Zaehle, S. (2022). Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nature Communications, 13: 4781. doi:10.1038/s41467-022-32416-8 [publisher-version][supplementary-material]
  • Poulter, B., Bastos, A., Canadell, J., Ciais, P., Huntzinger, D., Houghton, R., Kurz, W., Petrescu, A., Pongratz, J., Sitch, S. & Luyssaert, S. (2022). Bottom-up approaches for estimating terrestrial GHG budgets: Bookkeeping, process-based modeling, and data-driven methods. In Poulter, B. (Eds.), Balancing greenhouse gas budgets: (pp.59-85). Amsterdam: Elsevier.
  • Qiu, C., Ciais, P., Zhu, D., Guenet, B., Chang, J., Chaudhary, N., Kleinen, T., Li, X., Müller, J., Xi, Y., Zhang, W., Ballantyne, A., Brewer, S., Brovkin, V., Charman, D., Gustafson, A., Gallego-Sala, A., Gasser, T., Holden, J., Joos, F., Kwon, M., Lauerwald, R., Miller, P., Peng, S., Page, S., Smith, B., Stocker, B., Sannel, A., Salmon, E., Schurgers, G., Shurpali, N., Wårlind, D. & Westermann, S. (2022). A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth, 5, 86-97. doi:10.1016/j.oneear.2021.12.008 [publisher-version][supplementary-material]
  • Schneck, R., Gayler, V., Nabel, J., Raddatz, T., Reick, C. & Schnur, R. (2022). Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2. Geoscientific Model Development, 15, 8581-8611. doi:10.5194/gmd-15-8581-2022 [publisher-version]
  • Schwingshackl, C., Obermeier, W., Bultan, S., Grassi, G., Canadell, J., Friedlingstein, P., Gasser, T., Houghton, R., Kurz, W., Sitch, S. & Pongratz, J. (2022). Differences in land-based mitigation estimates reconciled by separating natural and land-use CO2 fluxes at the country level. One Earth, 5, 1367- 1376. doi:10.1016/j.oneear.2022.11.009 [publisher-version]
  • Specht, N., Claussen, M. & Kleinen, T. (2022). Simulated range of mid-Holocene precipitation changes to extended lakes and wetlands over North Africa. Climate of the Past, 18, 1035-1046. doi:10.5194/cp-18-1035-2022 [supplementary-material][publisher-version]
  • Stavert, A., Saunois, M., Canadell, J., Poulter, B., Jackson, R., Regnier, P., Lauerwald, R., Raymond, P., Allen, G., Patra, P., Bergamaschi, P., Bousquet, P., Chandra, N., Ciais, P., Gustafson, A., Ishizawa, M., Ito, A., Kleinen, T., Maksyutov, S., McNorton, J., Melton, J., Müller, J., Niwa, Y., Peng, S., Riley, W., Segers, A., Tian, H., Tsuruta, A., Yin, Y., Zhang, Z., Zheng, B. & Zhuang, Q. (2022). Regional trends and drivers of the global methane budget. Global Change Biology, 28, 182-200. doi:10.1111/gcb.15901 [publisher-version]
  • Wey, H.-W., Pongratz, J., Nabel, J. & Naudts, K. (2022). Effects of increased drought in Amazon forests under climate change: Separating the roles of canopy responses and soil moisture. Journal of Geophysical Research: Biogeosciences, 127: e2021JG006525. doi:10.1029/2021JG006525 [supplementary-material][publisher-version]
  • Wilkenskjeld, S., Miesner, F., Overduin, P., Puglini, M. & Brovkin, V. (2022). Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change. The Cryosphere, 16, 1057-1069. doi:10.5194/tc-16-1057-2022 [publisher-version][supplementary-material]
  • Boysen, L., Brovkin, V., Wårlind, D., Peano, D., Lansø, A., Delire, C., Burke, E., Poeplau, C. & Don, A. (2021). Evaluation of soil carbon dynamics after forest cover change in CMIP6 land models using chronosequences. Environmental Research Letters, 16: 074030. doi:10.1088/1748-9326/ac0be1 [publisher-version][supplementary-material]
  • Brovkin, V., Brook, E., Williams, J., Bathiany, S., Lenton, T., Barton, M., DeConto, R., Donges, J., Ganopolski, A., McManus, J., Praetorius, S., de Vernal, A., Abe-Ouchi, A., Cheng, H., Claussen, M., Crucifix, M., Gallopín, G., Iglesias, V., Kaufman, D., Kleinen, T., Lambert, F., van der Leeuw, S., Liddy, H., Loutre, M.-F., McGee, D., Rehfeld, K., Rhodes, R., Seddon, A., Trauth, M., Vanderveken, L. & Yu, Z. (2021). Past abrupt changes, tipping points and cascading impacts in the Earth system. Nature Geoscience, 14, 550-558. doi:10.1038/s41561-021-00790-5 [post-print]
  • de Vrese, P. & Brovkin, V. (2021). Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios. Nature Communications, 12: 2688. doi:10.1038/s41467-021-23010-5 [publisher-version][supplementary-material]
  • de Vrese, P., Stacke, T., Kleinen, T. & Brovkin, V. (2021). Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios. The Cryosphere, 15, 1097-1130. doi:10.5194/tc-15-1097-2021 [publisher-version]
  • de Vrese, P., Stacke, T., Caves Rugenstein, J., Goodman, J. & Brovkin, V. (2021). Snowfall-albedo feedbacks could have led to deglaciation of Snowball Earth starting from mid-latitudes. Communications Earth & Environment, 2: 91. doi:10.1038/s43247-021-00160-4 [publisher-version][supplementary-material]
  • Dunkl, I., Spring, A., Friedlingstein, P. & Brovkin, V. (2021). Process-based analysis of terrestrial carbon flux predictability. Earth System Science Data, 12, 1413-1426. doi:10.5194/esd-12-1413-2021 [pre-print][supplementary-material][publisher-version]
  • Gonzalez-Rouco, J., Steinert, N., Garcia-Bustamante, E., Hagemann, S., de Vrese, P., Jungclaus, J., Lorenz, S., Melo-Aguilar, C., Garcia-Pereira, F. & Navarro, J. (2021). Increasing the depth of a land surface model. Part I: Impacts on the subsurface thermal regime and energy storage. Journal of Hydrometeorology, 22, 3211-3230. doi:10.1175/JHM-D-21-0024.1 [publisher-version]
  • Kleinen, T., Gromov, S., Steil, B. & Brovkin, V. (2021). Atmospheric methane underestimated in future climate projections. Environmental Research Letters, 16: 094006. doi:10.1088/1748-9326/ac1814 [supplementary-material][publisher-version][any-fulltext]
  • Liddicoat, S., Wiltshire, A., Jones, C., Arora, V., Brovkin, V., Cadule, P., Hajima, T., Lawrence, D., Pongratz, J., Schwinger, J., Séférian, R., Tjiputra, J. & Ziehn, T. (2021). Compatible fossil fuel CO2 emissions in the CMIP6 earth system models' historical and shared socioeconomic pathway experiments of the twenty-first century. Journal of Climate, 34, 2853-2875. doi:10.1175/JCLI-D-19-0991.1 [publisher-version][supplementary-material]
  • Loughran, T., Boysen, L., Bastos, A., Hartung, K., Havermann, F., Li, H., Nabel, J., Obermeier, W. & Pongratz, J. (2021). Past and future climate variability uncertainties in the global carbon budget using the MPI Grand Ensemble. Global Biogeochemical Cycles, 35: e2021GB007019. doi:10.1029/2021GB007019 [publisher-version]
  • Rehder, Z., Zaplavnova, A. & Kutzbach, L. (2021). Identifying drivers behind spatial variability of Methane concentrations in East Siberian ponds. Frontiers in Earth Science, 9: 617662. doi:10.3389/feart.2021.617662 [publisher-version][supplementary-material]
  • Rodriguez Lopez, J., Schickhoff , M., Sengupta, S. & Scheffran, J. (2021). Technological and social networks of a pastoralist artificial society: agent-based modeling of mobility patterns. Journal of Computational Social Science, 4, 681-707. doi:10.1007/s42001-020-00100-w [publisher-version]
  • Spring, A., Dunkl, I., Li, H., Brovkin, V. & Ilyina, T. (2021). Trivial improvements of predictive skill due to direct reconstruction of global carbon cycle. Earth System Dynamics, 12, 1139-1167. doi:10.5194/esd-12-1139-2021 [supplementary-material][publisher-version]
  • Steinert, N., Gonzalez-Rouco, J., de Vrese, P., Garcia-Bustamante, E., Hagemann, S., Melo-Aguilar, C., Jungclaus, J. & Lorenz, S. (2021). Increasing the depth of a land surface model. Part II: Temperature sensitivity to improved subsurface thermodynamics and associated permafrost response. Journal of Hydrometeorology, 22, 3231-3254. doi:10.1175/JHM-D-21-0023.1 [publisher-version]
  • Steinert, N., González-Rouco, J., Melo Aguilar, C., García Pereira, F., García-Bustamante, E., de Vrese, P., Alexeev, V., Jungclaus, J., Lorenz, S. & Hagemann, S. (2021). Agreement of analytical and simulation-based estimates of the required land depth in climate models. Geophysical Research Letters, 48: e2021GL094273. doi:10.1029/2021GL094273 [publisher-version]
  • Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O'Neill, B., Sanderson, B., Van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Tokarska, K., Hurtt, G., Kriegler, E., Meehl, G., Moss, R., Bauer, S., Boucher, O., Brovkin, V., Yhb, Y., Dix, M., Gualdi, S., Guo, H., John, J., Kharin, S., Kim, Y., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., Rong, X., Rosenbloom, N., Schupfner, M., Séférian, R., Sellar, A., Semmler, T., Shi, X., Song, Z., Steger, C., Stouffer, R., Swart, N., Tachiiri, K., Tang, Q., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K., Xin, X., Yang, S., Yu, Y. & Ziehn, T. (2021). Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth System Dynamics, 12, 253-293. doi:10.5194/esd-12-253-2021 [publisher-version]
  • Winkler, A., Myneni, R., Hannart, A., Sitch, S., Haverd, V., Lombardozzi, D., Arora, V., Pongratz, J., Nabel, J., Goll, D., Kato, E., Tian, H., Arneth, A., Friedlingstein, P., Jain, A., Zaehle , S. & Brovkin, V. (2021). Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences, 18, 4985-5010. doi:10.5194/bg-18-4985-2021 [publisher-version][supplementary-material]
  • Yu, Z., Joos, F., Bauska, T., Stocker, B., Fischer, H., Loisel, J., Brovkin, V., Hugelius, G., Nehrbass-Ahles, C., Kleinen, T. & Schmitt, J. (2021). No support for carbon storage of >1000 GtC in northern peatlands (Comment on the paper by Nichols & Peteet (2019) in Nature Geoscience, 12, 917-921). Nature Geoscience, 14, 465-467. doi:10.1038/s41561-021-00769-2 [publisher-version]
  • Alexandrov, G., Brovkin, V., Kleinen, T. & Yu, Z. (2020). The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences, 17, 47-54. doi:10.5194/bg-17-47-2020 [publisher-version][supplementary-material]
  • Arora, V., Katavouta, A., Williams, R., Jones, C., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M., Christian, J., Delire, C., Fisher, R., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C., Krasting, J., Law, R., Lawrence, D., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Seferian, R., Tachiiri, K., Tjiputra, J., Wiltshire, A., Wu, T. & Ziehn, T. (2020). Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17, 4173-4222. doi:10.5194/bg-17-4173-2020 [publisher-version]
  • Boysen, L., Brovkin, V., Pongratz, J., Lawrence, D., Lawrence, P., Vuichards, N., Peylin, P., Liddicoat, S., Hajima, T., Zhang, Y., Rocher, M., Delire, C., Séférian, R., Arora, V., Nieradzik, L., Anthoni, P., Thiery, W., Lague, M., Lawrence, D. & Lo, M.-H. (2020). Global climate response to idealized deforestation in CMIP6 models. Biogeosciences, 17, 5615-5638. doi:10.5194/bg-17-5615-2020 [publisher-version][supplementary-material][supplementary-material]
  • Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan, Y., Fisher, R., Jones, C., Lee, H., Peano, D., Smith, B., Wårlind, D. & Wiltshire, A. (2020). Nitrogen cycling in CMIP6 land surface models: progress and limitations. Biogeosciences, 17, 5129-5148. doi:10.5194/bg-2019-513 [publisher-version][supplementary-material]
  • Ito, A., Hajima, T., Lawrence, D., Brovkin, V., Delire, C., Guenet, B., Jones, C., Malyshev, S., Materia, S., McDermid, S., Peano, D., Pongratz, J., Robertson, E., Shevliakova, E., Vuichard, N., Warlind, D., Wiltshire, A. & Ziehn, T. (2020). Soil carbon sequestration simulated in CMIP6-LUMIP models: implications for climatic mitigation. Environmental Research Letters, 15: 124061. doi:10.1088/1748-9326/abc912 [publisher-version]
  • Jenny, J.-P., Koirala, S., Gregory-Eaves, I., Francus, P., Ahrens, B., Brovkin, V., Ojala, A., Zolitschka, B., Bader, J. & Carvalhais, N. (2020). Reply to Li et al.: Human societies began to play a significant role in global sediment transfer 4,000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 117, 5571-5572. doi:10.1073/pnas.1922723117 [publisher-version]
  • Kleinen, T., Mikolajewicz, U. & Brovkin, V. (2020). Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period. Climate of the Past, 16, 575-595. doi:10.5194/cp-16-575-2020 [supplementary-material][publisher-version]
  • Loisel, J., Gallego-Sala, A., Amesbury, M., Magnan, G., Anshari, G., Beilman, D., Benavides, J., Blewett, J., Camill, P., Charman, D., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C., Müller, J., van Bellen, S., West, J., Yu, Z., Bubier, J., Garneau, M., Moore, T., Sannel, A., Page, S., Väliranta, M., Bechtold, M., Brovkin, V., Cole, L., Chanton, J., Christensen, T., Davies, M., Vleeschouwer, F., Finkelstein, S., Frolking, S., Gałka, M., Gandois, L., Girkin, N., Harris, L., Heinemeyer, A., Hoyt, A., Jones, M., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T., Lamentowicz, M., Larmola, T., Leifeld, J., Lohila, A., Milner, A., Minkkinen, K., Moss, P., Naafs, B., Nichols, J., O’Donnell, J., Payne, R., Philben, M., Piilo, S., Quillet, A., Ratnayake, A., Roland, T., Sjögersten, S., Sonnentag, O., Swindles, G., Swinnen, W., Talbot, J., Treat, C., Valach, A. & Wu, J. (2020). Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 11, 70-77. doi:10.1038/s41558-020-00944-0
  • MacDougall, A., Frölicher, T., Jones, C., Rogelj, J., Matthews, H., Zickfeld, K., Arora, V., Barrett, N., Brovkin, V., Burger, F., Eby, M., Eliseev, A., Hajima, T., Holden, P., Jeltsch-Thömmes, A., Koven, C., Mengis, N., Menviel, L., Michou, M., Mokhov, I., Oka, A., Schwinger, J., Séférian, R., Shaffer, G., Sokolov, A., Tachiiri, K., Tjiputra, J., Wiltshire, A. & Ziehn, T. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences, 17, 2987-3016. doi:10.5194/bg-17-2987-2020 [publisher-version]
  • Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., Chang, J., De Kauwe, M., Estiarte, M., Goll, D., Hanson, P., Harper, A., Hou, E., Kigel, J., Knapp, A., Larsen, K., Li, W., Lienert, S., Luo, Y., Meir, P., Nabel, J., Ogaya, R., Parolari, A., Peng, C., Penuelas, J., Pongratz, J., Rambal, S., Schmidt, I., Shi, H., Sternberg, M., Tian, H., Tschumi, E., Ukkola, A., Vicca, S., Viovy, N., Wang, Y.-P., Wang, Z., Williams, K., Wu, D. & Zhu, Q. (2020). Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 26, 3336-3355. doi:10.1111/gcb.15024
  • Puglini , M., Brovkin, V., Reginer, P. & Arndt, S. (2020). Assessing the potential for non-turbulent methane escape from East Siberian Arctic Shelf. Biogeosciences, 17, 3247-3275. doi:10.5194/bg-17-3247-2020 [publisher-version]
  • Rehder, Z., Niederdrenk, A., Kaleschke, L. & Kutzbach, L. (2020). Analyzing links between simulated Laptev Sea sea ice and atmospheric conditions over adjoining landmasses using causal-effect networks. The Cryosphere, 14, 4201-4215. doi:10.5194/tc-14-4201-2020 [publisher-version][supplementary-material]
  • Saunois, M., Stavert, A., Poulter, B., Bousquet, P., Canadell, J., Jackson, R., Raymond, P., Dlugokencky, E., Houweling, S., Patra, P., Ciais, P., Arora, V., Bastviken, D., Bergamaschi, P., Blake, D., Brailsford, G., Bruhwiler, L., Carlson, K., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P., Covey, K., Curry, C., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M., Höglund-Isakson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K., Joos, F., Kleinen, T., Krummel, P., Langenfelds, R., Laruelle, G., Liu, L., Machida, T., Maksyutov, S., McDonald, K., McNorton, J., Miller, P., Melton, J., Morino, I., Müller, J., Murgia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R., Peng, C., Peng, S., Peters, G., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W., Rosentreter, J., Segers, A., Simpson, I., Shi, H., Smith, S., Steele, P., Thornton, B., Tian, H., Tohjima, Y., Tubiello, F., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T., van Weele, M., van der Werf, G., Weiss, R., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q. & Zhuang, Q. (2020). The Global Methane Budget: 2000–2017. Earth System Science Data, 12, 1561-1623. doi:10.5194/essd-12-1561-2020 [publisher-version][supplementary-material]
  • Abis, B. & Brovkin, V. (2019). Alternative tree-cover states of the boreal ecosystem: a conceptual model. Global Ecology and Biogeography, 28, 612-627. doi:10.1111/geb.12880 [supplementary-material][publisher-version]
  • Brovkin, V., Lorenz, S., Raddatz, T., Ilyina, T., Heinze , M., Stemmler, I., Toohey, M. & Claussen, M. (2019). What was the source of the atmospheric CO2 increase during Holocene?. Biogeosciences, 16, 2543-2555. doi:10.5194/bg-16-2543-2019 [publisher-version]
  • Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. & Myneni, R. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122-129. doi:10.1038/s41893-019-0220-7
  • Dallmeyer, A., Claussen, M. & Brovkin, V. (2019). Harmonising plant funtional type distributions for evaluating Earth System Models. Climate of the Past, 15, 335-366. doi:10.5194/cp-15-335-2019 [supplementary-material][publisher-version]
  • Jenny, J.-P., Koirala, S., Gregory-Eaves, I., Francus, P., Niemann, C., Ahrens, B., Brovkin, V., Baud, A., Ojala, A., Normandeau, A., Zolitschka, B. & Carvalhais, N. (2019). Human and climate global-scale imprint on sediment transfer during the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 116, 22972-22976. doi:10.1073/pnas.1908179116 [publisher-version][supplementary-material][supplementary-material]
  • Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Kornblueh, L., Takano, Y., Kröger, J., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B. & Marotzke, J. (2019). The Max Planck Institute Grand Ensemble - Enabling the Exploration of Climate System Variability. Journal of Advances in Modeling Earth Systems, 11, 2050-2069. doi:10.1029/2019MS001639 [publisher-version][supplementary-material]
  • Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Popke, D., Gayler, V., Giorgetta, M., Goll, D., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jiménez de la Cuesta Otero, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W., Nabel, J., Nam, C., Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T., Rast, S., Redler, R., Reick, C., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., de Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Roeckner, E. & Winkler, A. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998-1038. doi:10.1029/2018MS001400 [publisher-version]
  • Muster, S., Riley, W., Roth, K., Langer, M., Cresto-Aleina, F., Koven, C., Lange, S., Bartsch, A., Grosse, G., Wilson, C., Jones, B. & Boike, J. (2019). Size distributions of arctic waterbodies reveal consistent relations in their statistical moments in space and time. Frontiers in Earth Science, 7: 5. doi:10.3389/feart.2019.00005 [publisher-version][supplementary-material]
  • Park, T., Chen, C., Macias-Fauria, M., Tømmervik, H., Choi, S., Winkler, A., Bhatt, U., Walker, D., Piao, S., Brovkin, V., Nemani, R. & Myneni, R. (2019). Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, 25, 2382-2395. doi:10.1111/gcb.14638
  • Treat, C., Kleinen, T., Broothaerts, N., Dalton, A., Dommain, R., Douglas, T., Drexler, J., Finkelstein, S., Grosse, G., Hope, G., Hutchings, J., Jones, M., Kuhry, P., Lacourse, T., Lähteenoja, O., Loisel, J., Notebaert, B., Payne, R., Peteet, D., Sannel, A., Stelling, J., Strauss, J., Swindles, G., Talbot, J., Tarnocai, C., Verstraeten, G., Williams, C., Xia, Z., Yu, Z., Väliranta, M., Hättestrand, M., Alexanderson, H. & Brovkin, V. (2019). Widespread global peatland establishment and persistence over the last 130,000 y. Proceedings of the National Academy of Sciences, 116, 4822-4827. doi:10.1073/pnas.1813305116 [publisher-version][supplementary-material][supplementary-material][supplementary-material]
  • Willeit, M., Ganopolski, A., Calov, R. & Brovkin, V. (2019). Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Science Advances, 5: eaav7337. doi:10.1126/sciadv.aav7337 [publisher-version][supplementary-material]
  • Winkler, A., Myneni, R. & Brovkin, V. (2019). Investigating the applicability of emergent constraints. Earth System Dynamics, 10, 501-523. doi:10.5194/esd-10-501-2019 [publisher-version]
  • Winkler, A., Myneni, R., Alexandrov, G. & Brovkin, V. (2019). Earth system models underestimate Carbon fixation by plants in the high lattitudes. Nature Communications, 10: 885. doi:10.1038/s41467-019-08633-z [publisher-version]
  • Castro-Morales , K., Kleinen, T., Kaiser, S., Zaehle, S., Kittler, F., Kwon, M., Beer, C. & Göckede, M. (2018). Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia. Biogeosciences, 15, 2691-2722. doi:10.5194/bg-15-2691-2018 [publisher-version][supplementary-material]
  • Fischer, H., Meissner, K., Mix, A., Abram, N., Austermann, J., Brovkin, V., Capron, E., Colombaroli, D., Daniau, A.-L., Dyez, K., Felis, T., Finkelstein, S., Jaccard, S., McClymont, E., Rovere, A., Sutter, J., Wolff, E., Affolter, S., Bakker, P., Ballesteros-Cánovas, J., Barbante, C., Caley, T., Carlson, A., Churakova (Sidorova), O., Cortese, G., Cumming, B., Davis, B., de Vernal, A., Emile-Geay, J., Fritz, S., Gierz, P., Gottschalk, J., Holloway, M., Joos, F., Kucera, M., Loutre, M.-F., Lunt, D., Marcisz, K., Marlon, J., Martinez, P., Masson-Delmotte, V., Nehrbass-Ahles, C., Otto-Bliesner, B., Raible, C., Risebrobakken, B., Goñi, M., Arrigo, J., Sarnthein, M., Sjolte, J., Stocker, T., Alvárez, P., Tinner, W., Valdes, P., Vogel, H., Wanner, H., Yan, Q., Yu, Z., Ziegler, M. & Zhou, L. (2018). Palaeoclimate constraints on the impact of 2°C anthropogenic warming and beyond. Nature Geoscience, 11, 474-485. doi:10.1038/s41561-018-0146-0
  • Gasser, T., Kechiar, M., Ciais, P., Burke, E., Kleinen, T., Zhu, D., Huang, Y., Ekici, A. & Obersteiner, M. (2018). Path-dependent reduction in CO2 emission budgets caused by permafrost carbon release. Nature Geoscience, 11, 830-835. doi:10.1038/s41561-018-0227-0
  • Harper, A., Powell, I., Cox, P., House, J., Huntingford, C., Lenton, I., Sitch, S., Burke, E., Chadburn, S., Collins, W., Comyn-Platt, E., Daioglou, V., Doelmann, J., Hayman, G., Robertson, E., van Vuuren, D., Wiltshire, A., Webber, C., Bastos, A., Boysen, L. & Ciais, P. (2018). Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 9: 2938. doi:10.1038/s41467-018-05340-z [publisher-version]
  • Harrison, S., Bartlein, P., Brovkin, V., Houweling, S., Kloster, S. & Prentice, I. (2018). The biomass burning contribution to climate-carbon-cycle feedback. Earth System Dynamics, 9, 663-677. doi:10.5194/esd-9-663-2018 [publisher-version][supplementary-material]
  • Hirsch, A., Guillod, B., Seneviratne, S., Beyerly, U., Boysen, L., Brovkin, V., Davin, E., Doelman, J., Kim, H., Mitchell, D., Nitta, T., Shiogama, H., Sparrow, S., Stehfest, E., van Vuuren, D. & Wilson, S. (2018). Biogeophysical impacts of land use change on climate extremes in low emission scenarios: Results from HAPPI-Land. Earth's Future, 6, 396-409. doi:10.1002/2017EF000744 [publisher-version][supplementary-material]
  • Kleinen, T. & Brovkin, V. (2018). Pathway-dependent fate of permafrost region carbon. Environmental Research Letters, 13: 094001. doi:10.1088/1748-9326/aad824 [publisher-version][supplementary-material][supplementary-material]
  • Mikolajewicz, U., Ziemen, F., Cioni, G., Claussen, M., Fraedrich, K., Heidkamp, M., Hohenegger, C., Jiménez de la Cuesta, D., Kapsch, M.-L., Lemburg, A., Mauritsen, T., Meraner, K., Röber, N., Schmidt, H., Six, K., Stemmler, I., Tamarin-Brodsky, T., Winkler, A., Zhu, X. & Stevens, B. (2018). The climate of a retrograde rotating earth. Earth System Dynamics, 9, 1191-1215. doi:10.5194/esd-9-1191-2018 [publisher-version]
  • Müller, W., Jungclaus, J., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleinen, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F. & Marotzke, J. (2018). A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM 1.2 - HR). Journal of Advances in Modeling Earth Systems, 10, 1383 -1413. doi:10.1029/2017MS001217 [publisher-version]
  • Ostberg, S., Boysen, L., Schaphoff, S., Lucht, W. & Gerten, D. (2018). The biosphere under potential Paris outcomes. Earth's Future, 6, 23-39. doi:10.1002/2017EF000628 [supplementary-material][publisher-version]
  • Pugh, T., Jones, C., Huntingford, C., Burton, C., Arneth, A., Brovkin, V., Ciais, P., Lomas, M., Robertson, E., Piao, S. & Sitch, S. (2018). A large committed long-term sink of Carbon due to vegetation dynamics. Earth's Future, 6, 1413-1432. doi:10.1029/2018EF000935 [publisher-version]
  • Riddick, T., Brovkin, V., Hagemann, S. & Mikolajewicz, U. (2018). Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0. Geoscientific Model Development, 11, 4291-4316. doi:10.5194/gmd-11-4291-2018 [publisher-version][supplementary-material]
  • Schneider von Deimling, T., Kleinen, T., Hugelius, G., Knoblauch, C., Beer, C. & Brovkin, V. (2018). Long-term deglacial permafrost carbon dynamics in MPI-ESM. Climate of the Past, 14, 2011-2036. doi:10.5194/cp-14-2011-2018 [publisher-version]
  • Seneviratne, S., Wartenburger, R., Guillod, B., Hirsch, A., Vogel, M., Brovkin, V., van Vuuren, D., Schaller, N., Boysen, L., Calvin, K., Davin, E., Doelman, J., Greve, P., Havlik, P., Humpenöder, F., Krisztin, T., Mitchell, D., Popp, A., Riahi, K., Rogelj, J., Schleussner, C.-F., Sillmann, J. & Stehfest, E. (2018). Climate extremes, land-climate feedbacks, and land use forcing at 1.5°C. Philosophical Transactions of the Royal Society of London A, 376: 20160450. doi:10.1098/rsta.2016.0450
  • Viehberg, F., Just, J., Dean, J., Wagner, B., Franz, S., Klasen, N., Kleinen, T., Ludwig, P., Asrat, A., Lamb, H., Leng, M., Rethemeyer, J., Milodowski, A., Claussen, M. & Schäbitz, F. (2018). Environmental change during MIS4 and MIS3 opened corridors in the Horn of Africa for Homo sapiens expansion. Quaternary Science Reviews, 202, 139-153. doi:10.1016/j.quascirev.2018.09.008 [publisher-version]
  • Walter Anthony, K., Schneider von Deimling, T., Nitze, I., Frolking, S., Emond, A., Daanen, R., Anthony, P., Lindgren, P., Jones, B. & Grosse, G. (2018). 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nature Communications, 9: 3262. doi:10.1038/s41467-018-05738-9 [publisher-version]
  • Wu, D., Ciais, P., Viovy, N., Knapp, A., Wilcox, K., Bahn, M., Smith, M., Vicca, S., Fatichi, S., Zscheischler, J., He, Y., Li, X., Ito, A., Arneth, A., Harper, A., Ukkola, A., Paschalis, A., Poulter, B., Peng, C., Ricciuto, D., Reinthaler, D., Chen, G., Tian, H., Genet, H., Mao, J., Ingrisch, J., Nabel, J., Pongratz, J., Boysen, L., Kautz, M., Schmitt, M., Meir, P., Zhu, Q., Hasibeder, R., Sippel, S., Dangal, S., Sitch, S., Shi, X., Wang, Y., Luo, Y., Liu, Y. & Piao, S. (2018). Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 15, 3421-3437. doi:10.5194/bg-15-3421-2018 [publisher-version][supplementary-material]
  • Abis, B. & Brovkin, V. (2017). Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences, 14, 511-527. doi:10.5194/bg-14-511-2017 [supplementary-material][supplementary-material][publisher-version]
  • Boysen, L., Lucht, W., Gerten, D., Heck, V., Lenton, T. & Schellnhuber, H. (2017). The limits to global-warming mitigation by terrestrial carbon removal. Earth's Future, 5, 463-474. doi:10.1002/2016EF000469 [publisher-version]
  • Boysen, L., Lucht, W. & Gerten, D. (2017). Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Global Change Biology, 23, 4303-4317. doi:10.1111/gcb.13745
  • Ganopolski, A. & Brovkin, V. (2017). Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity. Climate of the Past, 13, 1695-1716. doi:10.5194/cp-13-1695-2017 [publisher-version]
  • Goll , D., Winkler, A., Raddatz, T., Dong, N., Prentice, I., Ciais, P. & Brovkin, V. (2017). Carbon-nitrogen interactions in idealized simulations with JSBACH (version 3.10). Geoscientific Model Development, 10, 2009-2030. doi:10.5194/gmd-10-2009-2017 [publisher-version][supplementary-material]
  • Kaiser, S., Göckede, M., Castro-Morales, K., Knoblauch, C., Ekici, A., Kleinen, T., Zubrzycki, S., Sachs, T. & Wille, C. (2017). Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane). Geoscientific Model Development, 10, 333-358. doi:10.5194/gmd-10-333-201 [publisher-version]
  • Liu, S., Bond-Lamberty, B., Boysen, L., Ford, J., Fox, A., Gallo, K., Hatfield, J., Henebry, G., Huntington, T., Liu, Z., Loveland, T., Norby, R., Sohl, T., Steiner, A., Yuan, W., Zhang, Z. & Zhao, S. (2017). Grand challenges in understanding the interplay of climate and land changes. Earth Interactions, 21, 1-43. doi:10.1175/EI-D-16-0012.1 [publisher-version]
  • Muster, S., Roth, K., Langer, M., Lange, S., Cresto-Aleina, F., Bartsch, A., Morgenstern, A., Grosse, G., Jones, B., Sannel, A., Sjoberg, Y., Guenther, F., Andresen, C., Veremeeva, A., Lindgren, P., Bouchard, F., Lara, M., Fortier, D., Charbonneau, S., Virtanen, T., Hugelius, G., Palmtag, J., Siewert, M., Riley, W., Koven, C. & Boike, J. (2017). PeRL: a circum-Arctic Permafrost Region Pond and Lake database. Earth System Science Data, 9, 317-348. doi:10.5194/essd-9-317-2017 [publisher-version]
  • Nyawira, S.-S., Nabel, J., Brovkin, V. & Pongratz, J. (2017). Input-driven versus turnover-driven controls of simulated changes in soil carbon from land-use change. Environmental Research Letters, 12(8): 084015. doi:10.1088/1748-9326/aa7ca9 [publisher-version][supplementary-material][supplementary-material]
  • Poulter, B., Bousquet, P., Canadell, J., Ciais, P., Peregon, A., Saunois, M., Arora, V., Beerling, D., Brovkin, V., Jones, C., Joos, F., Gedney, N., Ito, A., Kleinen, T., Koven, C., MacDonald, K., Melton, J., Peng, C., Peng, S., Schroder, R., Prigent, C., Riley, W., Saito, M., Spahni, R., Tian, H., Taylor, L., Viovy, N., Wilton, D., Wiltshire, A., Xu, X. & Zhang, Z. (2017). Global wetland contribution to 2000-2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 12: 094013. doi:10.1088/1748-9326/aa8391 [publisher-version]
  • Raivonen, M., Smolander, S., Backman, L., Susiluoto, J., Aalto, T., Markkanen, T., Mäkelä, J., Rinne, J., Peltola, O., Aurela, M., Tomasic, M., Li, X., Larmola, T., Juutinen, S., Tuittila, E.-S., Heimann, M., Sevanto, S., Kleinen, T., Brovkin, V. & Vesala, T. (2017). HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands. Geoscientific Model Development, 10, 4665-4691. doi:10.5194/gmd-10-4665-2017 [publisher-version][supplementary-material]
  • Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J., Dlugokencky, E., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F., Castaldi, S., Jackson, R., Alexe, M., Arora, V., Beerling, D., Bergamaschi, P., Blake, D., Brailsford, G., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., Melton, J., Morino, I., Naik, V., O'Doherty, S., Parmentier, F.-J., Patra, P., Peng, C., Peng, S., Peters, G., Pison, I., Prinn, R., Ramonet, M., Riley, W., Saito, M., Santini, M., Schroeder, R., Simpson, I., Spahni, R., Takizawa, A., Thornton, B., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., Weiss, R., Wilton, D., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z. & Zhu, Q. (2017). Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 17, 11135-11161. doi:10.5194/acp-17-11135-2017 [publisher-version][supplementary-material]
  • Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T., Schuur, E., Shmelev, D., Ulrich, M. & Veremeeva, A. (2017). Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Science Reviews, 172 , 75-86. doi:10.1016/j.earscirev.2017.07.007 [publisher-version]
  • Alexandrov, G., Brovkin, V. & Kleinen, T. (2016). The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum. Scientific Reports, 6: 24784. doi:10.1038/srep24784 [publisher-version]
  • Bastos, A., Ciais, P., Barichivich, J., Bopp, L., Brovkin, V., Gasser, T., Peng, S., Pongratz, J., Viovy, N. & Trudinger, C. (2016). Re-evaluating the 1940s CO2 plateau. Biogeosciences, 13, 4877-4897. doi:10.5194/bg-13-4877-2016 [publisher-version][supplementary-material]
  • Bathiany, S., Notz, D., Mauritsen, T., Rädel, G. & Brovkin, V. (2016). On the mechanism of Arctic winter sea ice collapse. Journal of Climate, 29, 2703-2719. doi:10.1175/JCLI-D-15-0466.1 [publisher-version][supplementary-material]
  • Brovkin, V., Brücher, T., Kleinen, T., Zaehle, S., Joos, F., Roth, R., Spahni, R., Schmitt, J., Fischer, H., Leuenberger, M., Stone, E., Ridgwell, A., Chappellaz, J., Kehrwald, N., Barbante, C., Blunier, T. & Dahl Jensen, D. (2016). Comparative carbon cycle dynamics of the present and last interglacial. Quaternary Science Reviews, 137, 15-32. doi:10.1016/j.quascirev.2016.01.028 [publisher-version][supplementary-material][supplementary-material]
  • Cresto-Aleina, F., Runkle, B., Brücher, T., Kleinen, T. & Brovkin, V. (2016). Upscaling methane emission hotspots in boreal peatlands. Geoscientific Model Development, 9, 915-926. doi:10.5194/gmd-9-915-2016 [publisher-version]
  • Hantson, S., Kloster, S., Coughlan, M., Daniau, A.-L., Vannière, B., Bruecher, T., Kehrwald, N. & Magi, B. (2016). Fire in the earth system - bridging data and modelling research. Bulletin of the American Meteorological Society, 97, 1069-1072. doi:10.1175/BAMS-D-15-00319.1 [publisher-version]
  • Jones, C., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. & Zaehle, S. (2016). C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 9, 2853-2880. doi:10.5194/gmd-9-2853-2016 [publisher-version]
  • Kleinen, T., Brovkin, V. & Munhoven, G. (2016). Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11. Climate of the Past, 12, 2145-2160. doi:10.5194/cp-12-2145-2016 [publisher-version]
  • Lasslop, G., Brovkin, V., Reick, C., Bathiany, S. & Kloster, S. (2016). Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophysical Research Letters, 43, 6324-6331. doi:10.1002/2016GL069365 [publisher-version]
  • Lawrence, D., Hurtt, G., Arneth, A., Brovkin, V., Calvin, K., Jones, A., Jones, C., Lawrence, P., de Noblet-Ducoudré, N., Pongratz, J., Seneviratne, S. & Shevliakova, E. (2016). The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development, 9, 2973-2998. doi:10.5194/gmd-9-2973-2016 [publisher-version]
  • Luo, Y., Ahlström, A., Allison, S., Batjes, N., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R., Jones, C., Lara, M., Liang, J., McGuire, A., Parton, W., Peng, C., Randerson, J., Salazar, A., Sierra, C., Smith, M., Tian, H., Todd-Brown, K., Torn, M., van Groenigen, K., Wang, Y., West, T., Wei, Y., Wieder, W., Xia, J., Xu, X., Xu, X. & Zhou, T. (2016). Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 30, 40-56. doi:10.1002/2015GB005239
  • Nyawira, S.-S., Nabel, J., Don, A., Brovkin, V. & Pongratz, J. (2016). Soil carbon response to land-use change: Evaluation of a global vegetation model using meta-data. Biogeosciences, 13, 5661-5675. doi:10.5194/bg-2016-161 [publisher-version][supplementary-material]
  • Park, T., Ganguly, S., Tommervik, H., Euskirchen, E., Hogda, K.-A., Karlsen, S., Brovkin, V., Nemani, R. & Myneni, R. (2016). Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters, 11: 084001. doi:10.1088/1748-9326/11/8/084001 [publisher-version][supplementary-material]
  • Brovkin, V., Past Interglacials Working Group of PAGES (2016). Interglacials of the last 800,000 years. Reviews of Geophysics, 54, 162-219. doi:10.1002/2015RG000482 [publisher-version]
  • Port, U., Claussen, M. & Brovkin, V. (2016). Radiative forcing and feedback by forests in warm climates – a sensitivity study. Earth System Dynamics, 7, 535-547. doi:10.5194/esd-7-535-2016 [publisher-version]
  • Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J., Dlugokencky, E., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F., Castaldi, S., Jackson, R., Alexe, M., Arora, V., Beerling, D., Bergamaschi, P., Blake, D., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P., Curry, C., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., McDonald, K., Marshall , J., Melton, J., Morino, I., O'Doherty, S., Parmentier, F.-J., Patra, P., Peng, C., Peng, S., Peters, G., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W., Saito, M., Schroder, R., Simpson, I., Spahni, R., Steele, P., Takizawa, A., Thorton, B., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G., Weiss, R., Wiedinmyer, C., Wilton, D., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z. & Zhu, Q. (2016). The Global Methane Budget: 2000–2012. Earth System Science Data, 8, 697-751. doi:10.5194/essd-8-697-2016 [publisher-version][supplementary-material]
  • Walter Anthony, K., Daanen, R., Anthony, P., Schneider von Deimling, T., Ping, C.-L., Chanton, J. & Grosse, G. (2016). Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience, 9, 679-682. doi:10.1038/ngeo2795
  • Baudena, M., Dekker, S., van Bodegom, P., Cuesta, B., Higgins, S., Lehsten, V., Reick, C., Rietkerk, M., Scheiter, S., Yin, Z., Zavala, M. & Brovkin, V. (2015). Forests, savannas and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models. Biogeosciences, 12, 1833-1848. doi:10.5194/bg-12-1833-2015 [publisher-version][publisher-version]
  • Bohn, T., Melton, J., Ito, A., Kleinen, T., Spahni, R., Stocker, B., Zhang, B., Zhu, X., Schroeder, R., Glagolev, M., Maksyutov, S., Brovkin, V., Chen, G., Denisov, S., Eliseev, A., Gallego-Sala, A., McDonald, K., Rawlins, M., Riley, W., Subin, Z., Tian, H., Zhuang, Q. & Kaplan, J. (2015). WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 12, 3321-3349. doi:10.5194/bg-12-3321-2015 [publisher-version][supplementary-material]
  • Brovkin, V. & Goll, D. (2015). Land unlikely to become large carbon source. Nature Geoscience, 8, 893. doi:10.1038/ngeo2598
  • Brovkin, V. & Ganopolski, A. (2015). The role of the terrestrial biosphere in CLIMBER-2 simulations of the last glacial CO2 cycles. Nova Acta Leopoldina NF, 121(No. 408 - Deglacial Changes in Ocean Dynamics and Atmospheric CO<sub>2</sub>), 43-47. [publisher-version]
  • Bruecher, T., Claussen, M. & Raddatz, T. (2015). Implications of land use changes in tropical West Africa under global warming. Earth System Dynamics, 6, 769-780. doi:10.5194/esd-6-769-2015 [publisher-version]
  • Claussen, M., Scheffran, J. & Bruecher, T. (2015). Climate, land use, and conflict in Northern Africa. EOS - Earth and Space Science News, 95.MPI-M/CliSAP Workshop on Climate, Land Use, and Conflict in Northern Africa. Lübeck. 2014-09-22 - 2014-09-25
  • Cresto-Aleina, F., Runkle, B., Kleinen, T., Kutzbach, L., Schneider, J. & Brovkin, V. (2015). Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes. Biogeosciences, 12, 5689-5704. doi:10.5194/bg-12-5689-2015 [publisher-version]
  • Dalmonech, D., Zaehle, S., Schürmann, G., Brovkin, V., Reick, C. & Schnur, R. (2015). Separation of the effects of land and climate model errors on simulated contemporary land carbon cycle trends in the MPI Earth System Model version 1. Journal of Climate, 28, 272-291. doi:10.1175/JCLI-D-13-00593.1
  • Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M., Huntingford, C., Scheffer, M., Sgubin, G. & Swingedouw, D. (2015). Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 112, E5777-E5786. doi:10.1073/pnas.1511451112 [supplementary-material]
  • Gaillard, M.-J., Kleinen, T., Samuelsson, P., Nielsen, A., Bergh, J., Kaplan, J., Poska, A., Sandström, C., Strandberg, G., Trondman, A.-K. & Wramneby, A. (2015). Causes of regional change—land cover. In The BACC II Author Team (Eds.), Second assessment of climate change for the Baltic Sea Basin (pp.453-477). Berlin: Springer. doi:10.1007/978-3-319-16006-1_25 [publisher-version]
  • Ganopolski, A. & Brovkin, V. (2015). The last four glacial CO2 cycles simulated with the CLIMBER-2 model. Nova Acta Leopoldina NF, 121(No. 408 - Deglacial Changes in Ocean Dynamics and Atmospheric CO2), 75-79. [publisher-version]
  • Goll, D., Brovkin, V., Liski, J., Raddatz, T., Thum, T. & Todd-Brown, K. (2015). Strong dependence of CO2 emissions from anthropogenic land cover change on soil carbon parametrization and initial land cover. Global Biogeochemical Cycles, 29, 1511-1523. doi:10.1002/2014GB004988 [publisher-version]
  • Kleinen, T., Bezrukova, E., Brovkin, V., Fischer, H., Hildebrandt, S., Müller, S., Prange, M., Rachmayani, R., Schmitt, J., Schneider, R., Schulz, M. & Tarasov, P. (2015). Comparison of climate and carbon cycle dynamics during Late Quaternary interglacials. In Schulz, M. & Paul, A. (Eds.), Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC) (pp.7-12). Cham: Springer.
  • Kloster, S., Bruecher, T., Brovkin, V. & Wilkenskjeld, S. (2015). Controls on fire activity over the Holocene. Climate of the Past, 11, 781-788. doi:10.5194/cp-11-781-2015 [publisher-version]
  • Koven, C., Chambers, J., Georgiou, K., Knox, R., Negron-Juarez, R., Riley, W., Arora, V., Brovkin, V., Friedlingstein, P. & Jones, C. (2015). Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences, 12, 5211-5228. doi:10.5194/bg-12-5211-2015 [publisher-version]
  • Link, M., Bruecher, T., Claussen, M., Link, J. & Scheffran, J. (2015). The nexus of climate change, land use, and conflict: complex human-environment interactions in Northern Africa. Bulletin of the American Meteorological Society, 96, 1561-1564. doi:10.1175/BAMS-D-15-00037.1 [publisher-version]
  • Schneck, R., Reick, C., Pongratz, J. & Gayler, V. (2015). The mutual importance of anthropogenically and climate induced changes in global vegetation cover for future land carbon emissions in the MPI-ESM CMIP5 simulations. Global Biogeochemical Cycles, 29, 1816-1829. doi:10.1002/2014GB004959
  • van Nes, E., Scheffer, M., Brovkin, V., Lenton, T., Ye, H., Deyle, E. & Sugihara, G. (2015). Causal feedbacks in climate change. Nature Climate Change, 5, 445-448. doi:10.1038/NCLIMATE2568
  • Verheijen, L., Aerts, R., Brovkin, V., Cavender-Bares, J., Cornelissen, J., Kattge, J. & van Bodegom, P. (2015). Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Global Change Biology, 21, 3074-3086. doi:10.1111/gcb.12871
  • Zennaro, P., Kehrwald, N., Marlon, J., Ruddiman, W., Bruecher, T., Agostinelli, C., Dahl-Jensen, D., Zangrando, R., Gambaro, A. & Barbante, C. (2015). Europe on fire three thousand years ago: Arson or climate?. Geophysical Research Letters, 42, 5023-5033. doi:10.1002/2015GL064259 [publisher-version]
  • Bathiany, S., Claussen, M. & Brovkin, V. (2014). CO2-induced Sahel greening in CMIP5 Earth System Models. Journal of Climate, 27, 7163-7184. doi:10.1175/JCLI-D-13-00528.1 [publisher-version]
  • Boysen, L., Brovkin, V., Arora, V., Cadule, P., de Noblet-Ducoudré, N., Kato, E., Pongratz, J. & Gayler, V. (2014). Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth System Dynamics, 5, 309-319. doi:10.5194/esd-5-309-2014 [publisher-version][supplementary-material]
  • Brücher, T., Brovkin, V., Kloster, S., Marlon, J. & Power, M. (2014). Comparing modelled fire dynamics with charcoal records for the Holocene. Climate of the Past, 10, 811-824. doi:10.5194/cp-10-811-2014 [publisher-version][supplementary-material]
  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R., Piao, S. & Thornton, P. (2014). Carbon and other biogeochemical cycles. In Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp.465-570). Cambridge: Cambridge University Press. [publisher-version][supplementary-material]
  • Foley, A., Willeit, M., Brovkin, V., Feulner, G. & Friend, A. (2014). Quantifying the global carbon cycle response to volcanic stratospheric aerosol radiative forcing using Earth System Models. Journal of Geophysical Research-Atmospheres, 119, 101 -111. doi:10.1002/2013JD019724 [publisher-version]
  • Goll, D., Moosdorf, N., Hartmann, J. & Brovkin, V. (2014). Climate-driven changes in chemical weathering and associated phosphorus release since 1850: Implications for the land carbon balance. Geophysical Research Letters, 41, 3553-3558. doi:10.1002/2014GL059471 [publisher-version]
  • Kleinen, T., Hildebrandt, S., Prange, M., Rachmayani, R., Müller, S., Bezrukova, E., Brovkin, V. & Tarasov, P. (2014). The climate and vegetation of Marine Isotope Stage 11 - model results and proxy-based reconstructions at global and regional scale. Quaternary International, 348, 247-265. doi:10.1016/j.quaint.2013.12.028
  • Otto, J., Berveiller, D., Breon, F.-M., Delpierre, N., Geppert, G., Granier, A., Jans, W., Knohl, A., Kuusk, A., Longdoz, B., Moors, E., Mund, M., Pinty, B., Schelhaas, M.-J. & Luyssaert, S. (2014). Forest summer albedo is sensitive to species and thinning: how should we account for this in Earth system models?. Biogeosciences, 11, 2411-2427. doi:10.5194/bg-11-2411-2014 [publisher-version]
  • Vamborg, F., Brovkin, V. & Claussen, M. (2014). Background albedo dynamics improve simulated precipitation variability in the Sahel region. Earth System Dynamics, 5, 89-101. doi:10.5194/esdd-4-595-2013 [publisher-version]
  • Arora, V., Boer, G., Friedlingstein, P., Eby, M., Jones, C., Christian, J., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. & Wu, T. (2013). Carbon-concentration and carbon-1 climate feedbacks in CMIP5 earth system models. Journal of Climate, 26, 5289 -5314. doi:10.1175/JCLI-D-12-00494.1 [publisher-version]
  • Brovkin, V., Boysen, L., Arora, V., Boisier, J., Cadule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B., Hurtt, G., Jones, C., Kato, E., de Noblet-Ducoudré, N., Pacifico, F., Pongratz, J. & Weiss, M. (2013). Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21st century. Journal of Climate, 26, 6859-6881. doi:10.1175/JCLI-D-12-00623.1 [publisher-version]
  • Brovkin, V., Boysen, L., Raddatz, T., Gayler, V., Loew, A. & Claussen, M. (2013). Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. Journal of Advances in Modeling Earth Systems, 5, 48-57. doi:10.1029/2012MS000169 [publisher-version]
  • Claussen, M., Selent, K., Brovkin, V., Raddatz, T. & Gayler, V. (2013). Impact of CO2 and climate on Last Glacial maximum vegetation – a factor separation. Biogeosciences, 10, 3593-3604. doi:10.5194/bg-10-3593-2013 [publisher-version]
  • Claussen, M., Bathiany, S., Brovkin, V. & Kleinen, T. (2013). Simulated climate-vegetation interaction in semi-arid regions affected by plant diversity. Nature Geoscience, 6, 954-958. doi:10.1038/ngeo1962
  • Coulthard, T., Ramirez, J., Barton, N., Rogerson, M. & Bruecher, T. (2013). Were rivers flowing across the Sahara during the last interglacial ? Implications for human migration through Africa. PLoS One, 8: e74834. doi:10.1371/journal.pone.0074834 [publisher-version]
  • Cresto-Aleina, F., Brovkin, V., Muster, S., Boike, J., Kutzbach, L., Sachs, T. & Zuyev, S. (2013). A stochastic model for the polygonal tundra based on Poisson-Voronoi diagrams. Earth System Dynamics, 4, 187-198. doi:10.5194/esd-4-187-2013 [publisher-version]
  • Cresto-Aleina, F., Baudena, M., D'Andrea, F. & Provenzale, A. (2013). Multiple equilibria on planet dune: Climate-vegetation dynamics on a sandy planet. Tellus, Series B - Chemical and Physical Meteorology, 65: 17662. doi:10.3402/tellusb.v65i0.17662 [publisher-version][supplementary-material]
  • Dass, P., Müller, C., Brovkin, V. & Cramer, W. (2013). Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of mid to high latitudes?. Earth System Dynamics, 4, 409-424. doi:10.5194/esd-4-409-2013 [publisher-version]
  • Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J. & Stevens, B. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. Journal of Advances in Modeling Earth Systems, 5, 572-597. doi:10.1002/jame.20038 [publisher-version]
  • Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L., Brovkin, V., Hajima, T., Kato, E., Kawamiya, M., Liddicoat, S., Lindsay, K., Reick, C., Roelandt, C., Segschneider, J. & Tjiputra, J. (2013). 21st century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under 4 representative concentration pathways. Journal of Climate, 26, 4398 -4413. doi:10.1175/JCLI-D-12-00554.1 [publisher-version]
  • Joos, F., Roth, R., Fuglevestvedt, J., Peters, G., Enting, I., von Bloh, W., Brovkin, V., Burke, M., Eby, M., Edwards, N., Friedrich, T., Frölicher, T., Halloran, P., Holden, P., Jones, C., Kleinen, T., Mackenzie, F., Matsumoto, K., Meinshausen, M., Plattner, G.-K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Timmermann, A. & Weaver, A. (2013). Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics:a multi-model analysis. Atmospheric Chemistry and Physics, 13, 2793-2825. doi:10.5194/acp-13-2793-2013 [publisher-version]
  • Kehrwald, N., Whitlock, C., Barbante, C., Brovkin, V., Daniau, A.-L., Kaplan, J., Marlon, J., Power, M., Thonicke, K. & van der Werf, G. (2013). Recent advancements in wildfire research: linking paleofire data, modern observations and modeling. Eos Transactions, 94, 421-423. doi:10.1002/2013EO460001 [publisher-version]
  • Melton, J., Wania, R., Hodson, E., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C., Beerling, D., Chen, G., Eliseev, A., Denisov, S., Hopcroft, P., Lettenmaier, D., Riley, W., Singarayer, J., Subin, Z., Tian, H., Zürcher, S., Brovkin, V., van Bodegom, P., Kleinen, T., Yu, Z. & Kaplan, J. (2013). Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP). Biogeosciences, 10, 753-788. doi:10.5194/bg-10-753-2013 [publisher-version]
  • Notz, D., Brovkin, V. & Heimann, M. (2013). Arctic: uncertainties in methane link. Nature, 500, 529-529. doi:10.1038/500529b
  • Reick, C., Raddatz, T., Brovkin, V. & Gayler, V. (2013). Representation of natural and anthropogenic land cover change in MPI-ESM. Journal of Advances in Modeling Earth Systems, 5, 459-482. doi:10.1002/jame.20022 [publisher-version]
  • Schuldt, R., Brovkin, V., Kleinen, T. & Winderlich, J. (2013). Modelling Holocene carbon accumulation and methane emissions of boreal wetlands: an earth system model approach. Biogeosciences, 10, 1659-1674. doi:10.5194/bg-10-1659-2013 [publisher-version]
  • Schuur, E., Abbott, B., Bowden, W., Brovkin, V., Camill, P., Canadell, J., Chanton, J., Chapin III, F., Christensen, T., Clais, P., Crosby, B., Czimczik, C., Grosse, G., Harden, J., Hayes, D., Hugelius, G., Jastrow, J., Jones, J., Kleinen, T., Koven, C., Krinner, G., Kuhry, P., Lawrence, D., McGuire, A., Natali, S., O'Donnell, J., Ping, C., Riley, W., Rinke, A., Romanovsky, V., Sannel, A., Schädel, C., Schaefer, K., Sky, J., Subin, Z., Tarnocal, C., Turetsky, M., Waldrop, M., Walther Anthony, K., Wickland, K., Wilson, C. & Zimov, S. (2013). Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 359-374. doi:10.1007/s10584-013-0730-7 [publisher-version]
  • Segschneider, J., Beitsch, A., Timmreck, C., Brovkin, V., Ilyina, T., Jungclaus, J., Lorenz, S., Six, K. & Zanchettin, D. (2013). Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations. Biogeosciences, 10, 669-687. doi:10.5194/bg-10-669-2013 [publisher-version]
  • Seneviratne, S., Wilhelm, M., Stanelle, T., van den Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M., Meier, A., Brovkin, V., Claussen, M., Dufresne, J.-L., Findell, K., Lawrence, D., Malyshev, S. & Smith, B. (2013). Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophysical Research Letters, 40, 5212-5217. doi:10.1002/grl.50956 [publisher-version]
  • Verheijen, L., Brovkin, V., Aerts, R., Bönish, G., Cornelissen, J., Kattge, J., Reich, P., Wright, I. & van Bodegom, P. (2013). Impacts of trait variation through observed trait-climate relationships on performance of a representative Earth System Model: a conceptual analysis. Biogeosciences, 10, 5497 -5515. doi:10.5194/bg-10-5497-2013 [publisher-version]
  • Wania, R., Melton, J., Hodson, E., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C., Chen, G., Eliseev, A., Hopcroft, P., Riley, W., Subin, Z., Tian, H., van Bodegom, P., Kleinen, T., Yu, Z., Singarayer, J., Zürcher, S., Lettenmaier, D., Beerling, D., Denisov, S., Prigent, C., Papa, F. & Kaplan, J. (2013). Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 6, 617-641. doi:10.5194/gmd-6-617-2013 [publisher-version]
  • Brovkin, V., van Bodegom, P., Kleinen, T., Wirth, C., Cornwell, W., Cornelissen, J. & Kattge, J. (2012). Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences, 9, 565-576. doi:10.5194/bg-9-565-2012 [publisher-version]
  • Brovkin, V., Ganopolski, A., Archer, D. & Munhoven, G. (2012). Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Climate of the Past, 8, 251-264. doi:10.5194/cp-8-251-2012 [publisher-version]
  • de Noblet-Ducoudre, N., Boisier, J., Pitman, A., Bonan, G., Brovkin, V., Cruz, F., Delire, C., Gayler, V., van den Hurk, B., Lawrence, P., van der Molen, M., Muller, C., Reick, C., Strengers, B. & Voldoire, A. (2012). Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. Journal of Climate, 25, 3261-3281. doi:10.1175/JCLI-D-11-00338.1
  • Goll, D., Brovkin, V., Parida, B., Reick, C., Kattge, J., Reich, P., van Bodegom, P. & Niinemets, Ü. (2012). Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences, 9, 3547-3569. doi:10.5194/bg-9-3547-2012 [publisher-version]
  • Kleinen, T., Brovkin, V. & Schuldt, R. (2012). A dynamic model of wetland extent and peat accumulation: Results for the Holocene. Biogeosciences, 9, 235-248. doi:10.5194/bg-9-235-2012 [publisher-version]
  • Pitman, A., de Noblet-Ducoudré, N., Avila, F., Alexander, L., Boisier, J.-P., Brovkin, V., Delire, C., Cruz, F., Donat, M., Gayler, V., van den Hurk, B., Reick, C. & Voldoire, A. (2012). Effects of land cover change on temperature. Earth System Dynamics, 3, 213-231. doi:10.5194/esd-3-213-2012 [publisher-version]
  • Port, U., Brovkin, V. & Claussen, M. (2012). The influence of vegetation dynamics on anthropogenic climate change. Earth System Dynamics, 3, 233-243. doi:10.5194/esd-3-233-2012 [publisher-version]
  • Schneider von Deimling, T., Meinshausen, M., Levermann, A., Huber, V., Frieler, K., Lawrence, D. & Brovkin, V. (2012). Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9, 649-665. doi:10.5194/bg-9-649-2012 [supplementary-material][publisher-version]
  • Timmreck, C., Graf, H.-F., Zanchettin, D., Hagemann, S., Kleinen, T. & Krüger, K. (2012). Climate response to the Toba super-eruption: regional changes. Quaternary International, 258, 30-44. doi:10.1016/j.quaint.2011.10.008
  • Tzedakis, P., Wolff, E., Skinner, L., Brovkin, V., Hodell, D., McManus, J. & Raynaud, D. (2012). Can we predict the duration of an interglacial?. Climate of the Past, 8, 1473-1485. doi:10.5194/cp-8-1473-2012 [publisher-version]
  • Varma, V., Prange, M., Merkel, U., Kleinen, T., Lohmann, G., Pfeiffer, M., Renssen, H., Wagner, A., Wagner, S. & Schulz, M. (2012). Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past, 8, 391-402. doi:10.5194/cp-8-391-2012 [publisher-version][supplementary-material]
  • Andreev, A., Schirrmeister, L., Tarasov, P., Ganopolski, A., Brovkin, V., Siegert, C., Wetterich, S. & Hubberten, H.-W. (2011). Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quaternary Science Reviews, 30, 2182-2199. doi:10.1016/j.quascirev.2010.12.026
  • Bouttes, N., Paillard, D., Roche, D., Brovkin, V. & Bopp, L. (2011). Last glacial maximum CO₂ and δ13C successfully reconciled. Geophysical Research Letters, 38: L02705. doi:10.1029/2010GL044499 [publisher-version]
  • Brovkin, V. (2011). Indelible footprint. Nature Geoscience, 4, 496. doi:10.1038/ngeo1220
  • Kleinen, T., Tarasov, P., Brovkin, V., Andreev, A. & Stebich, M. (2011). Comparison of modeled and reconstructed changes in forest cover through the past 8000 years: Eurasian perspective. The Holocene, 21(5), 723-734. doi:10.1177/0959683610386980
  • Otto, J., Raddatz, T. & Claussen, M. (2011). Strength of forest-albedo feedback in mid-Holocene climate simulations. Climate of the Past, 7, 1027-1039. doi:10.5194/cp-7-1027-2011 [publisher-version]
  • Palastanga, V., van der Schrier, G., Weber, S., Kleinen, T., Briffa, K. & Osborn, T. (2011). Atmosphere and ocean dynamics: contributors to the European Little Ice Age ?. Climate Dynamics, 36, 973-987. doi:10.1007/s00382-010-0751-0 [publisher-version]
  • Rietkerk, M., Brovkin, V., van Bodegom, P., Claussen, M., Dekker, S., Dijkstra, H., Goryachkin, S., Kabat, P., van Nes, E., Neutel, A.-M., Nicholson, S., Nobre, C., Petoukhov, V., Provenzale, A., Scheffer, M. & Seneviratne, S. (2011). Local ecosystem feedbacks and critical transitions in the climate. Ecological Complexity, 8(3), 223-228. doi:10.1016/j.ecocom.2011.03.001
  • Vamborg, F., Brovkin, V. & Claussen, M. (2011). The effect of dynamic background albedo scheme on Sahel/Sahara precipitation during the Mid-Holocene. Climate of the Past, 7, 117-131. doi:10.5194/cp-7-117-2011 [publisher-version]
  • Bathiany, S., Claussen, M., Brovkin, V., Raddatz, T. & Gayler, V. (2010). Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences, 7, 1383-1399. doi:10.5194/bg-7-1383-2010 [publisher-version]
  • Brovkin, V., Lorenz, S., Jungclaus, J., Raddatz, T., Timmreck, C., Reick, C., Segschneider, J. & Six, K. (2010). Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions. Tellus B, 62, 674-681. doi:10.1111/j.1600-0889.2010.00471.x [publisher-version]
  • Dekker, S., de Boer, H., Brovkin, V., Fraedrich, K., Wassen, M. & Rietkerk, M. (2010). Biogeophysical feedbacks trigger shifts in the modelled vegetation-atmosphere system at multiple scales. Biogeosciences, 7, 1237-1245. doi:10.5194/bg-7-1237-2010 [publisher-version]
  • Jungclaus, J., Lorenz, S., Timmreck, C., Reick, C., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M., Crowley, T., Pongratz, J., Krivova, N., Vieira, L., Solanki, S., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B. & Marotzke, J. (2010). Climate and carbon-cycle variability over the last millennium. Climate of the Past, 6, 723-737. doi:10.5194/cp-6-723-2010 [publisher-version]
  • Kleinen, T., Brovkin, V., von Bloh, W., Archer, D. & Munhoven, G. (2010). Holocene carbon cycle dynamics. Geophysical Research Letters, 37: L2705. doi:10.1029/2009GL041391 [publisher-version]
  • Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Long, C., Mikolajewicz, U., Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A. & Tokos, K. (2009). Atmospheric lifetime of fossil-fuel carbon dioxide. Annual Review of Earth and Planetary Sciences, 37, 117-134.
  • Archer, D., Buffet, B. & Brovkin, V. (2009). Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 106, 20596-20601. doi:10.1073/pnas.0800885105 [publisher-version]
  • Brovkin, V., Petoukhov, V., Claussen, M., Bauer, E., Archer, D. & Jaeger, C. (2009). Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Climatic Change, 92, 243-259. doi:10.1007/s10584-008-9490-1 [publisher-version]
  • Brovkin, V., Raddatz, T., Reick, C., Claussen, M. & Gayler, V. (2009). Global biogeophysical interactions between forest and climate. Geophysical Research Letters, 36: L07405. doi:10.1029/2009GL037543 [publisher-version]
  • Churkina, G., Brovkin, V., von Bloh, W., Trusilova, K., Jung, M. & Dentener, F. (2009). Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming. Global Biogeochemical Cycles, 23: GB4027. doi:10.1029/2008GB003291 [publisher-version]
  • Kleinen, T., Osborn, T. & Briffa, K. (2009). Sensitivity of climate response to variations in freshwater hosing location. Ocean Dynamics, 59, 509-521. doi:10.1007/s10236-009-0189-2 [publisher-version]
  • Otto, J., Raddatz, T. & Claussen, M. (2009). Climate variability-induced uncertainty in mid-Holocene atmosphere-ocean-vegetation feedbacks. Geophysical Research Letters, 36: L23710. doi:10.1029/2009GL041457 [publisher-version]
  • Otto, J., Raddatz, T., Claussen, M., Brovkin, V. & Gayler, V. (2009). Separation of atmosphere-ocean-vegetation feedbacks and synergies for mid-Holocene climate. Geophysical Research Letters, 36: L09701. doi:10.1029/2009GL037482. [publisher-version]
  • Pitman, A., de Noblet-Ducoudré, N., Cruz, F., Davin, E., Bonan, G., Brovkin, V., Claussen, M., Delire, C., Ganzefeld, L., Gayler, V., van den Hurk, B., Lawrence, P., van der Molen, M., Müller, C., Reick, C., Seneviratne, S., Strengers, B. & Voldoire, A. (2009). Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophysical Research Letters, 36: L14814. doi:10.1029/2009GL039076 [publisher-version]
  • Scheffer, M., Bascompte, J., Brock, W., Brovkin, V., Carpenter, S., Dakos, V., Held, H., van Nes, E., Rietkerk, M. & Sugihara, G. (2009). Early-warning signals for critical transitions [Review]. Nature, 461(7260), 53-59. doi:10.1038/nature08227
  • Tzedakis, P., Raynaud, D., McManus, J., Berger, A., Brovkin, V. & Kiefer, T. (2009). Interglacial diversity. Nature Geoscience, 2, 751-755. doi:10.1038/ngeo660
  • Archer, D. & Brovkin, V. (2008). Millennial atmospheric lifetime of anthropogenic CO₂. Climatic Change, 90, 283-297. doi:10.1007/s10584-008-9413-1 [publisher-version]
  • Brovkin, V. & Claussen, M. (2008). Comment on “Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years". Science, 322, 1326b-1326b. doi:10.1126/science.1163381
  • Brovkin, V., Cherkinsky, A. & Gorachkin, S. (2008). Estimating soil carbon turnover using radiocarbon data: a case study for European Russia. Ecological Modelling, 216, 178-187. doi:10.1016/j.ecolmodel.2008.03.018
  • Cornwell, W., Johannes, H., Cornelissen, J., Amatangelo, K., Dorrepaal, E., Eviner, V., Godoy, O., Hobbie, S., Hoorens, B., Kurokawa, H., Harguindeguy, N., Quested, H., Santiago, L., Wardle, D., Wright, I., Aerts, R., Allison, S., van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T., Diaz, S., Garnier, E., Gurvich, D., Kazakou, E., Klein, J., Read, J., Reich, P., Soudzilovskaia, N., Vaieretti, V. & Westoby, M. (2008). The leaf economic spectrum drives litter decomposition within regional floras worldwide. Ecology Letters, 11, 1065-1071. doi:10.111/j.1461-0248.2008.01219.x
  • Dakos, V., Scheffer, M., van Nes, E., Brovkin, V., Petoukhov, V. & Held, H. (2008). Slowing down as an early warning signal for abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America, 105, 14308-14312. doi:10.1073/pnas.0802430105 [publisher-version]
  • Jaeger, C., Schellnhuber, H. & Brovkin, V. (2008). Stern's review and Dam's fallacy. Climatic Change, 89, 207-218. doi:10.1007/s10584-008-9436-7 [publisher-version]

Kontakt

Prof. Dr. Victor Brovkin

Gruppenleiter
Tel: +49 (0)40 41173-339
victor.brovkin@we dont want spammpimet.mpg.de


Weitere Themen

Abteilung Klimadynamik

Unser Ziel ist es, unser grundlegendes Verständnis der globalen Klimadynamik zu verbessern. Hierfür wenden wir eine einzigartige Forschungsstrategie an, die eine systematische Kombination einer Modellhierarchie ...

 

Mehr erfahren

Savanne mit Bergen des Ennedi Plateau im Hintergrund

Erdumlaufbahn und Treibhausgas-Konzentrationen beeinflussen afrikanische Feuchtperioden

Forscher des Max-Planck-Instituts für Meteorologie haben in einer neuen Studie untersucht, was in der Vergangenheit dazu geführt hat, dass…

Erodierende Permafrost-Klippen

Verstärkung des Klimawandels durch Rückkopplung zwischen Permafrost und Wolken

Forscher*innen des Max-Planck-Instituts für Meteorologie geben Aufschluss darüber, was passieren könnte, wenn die globale Erwärmung zu einem Auftauen…