Globale Zirkulation und Klima
Es besteht ein überwältigender wissenschaftlicher Konsens darüber, dass steigende Treibhausgaskonzentrationen eine globale Erwärmung verursachen. Es wird jedoch immer noch diskutiert, wie viel Erwärmung genau eintritt, beispielsweise bei einer Verdoppelung der atmosphärischen Kohlendioxid (CO2)-Konzentration. Diese Erwärmung wird als Klimasensitivität bezeichnet. Außerdem erlebt der Mensch nicht die globale Mitteltemperatur, sondern das tägliche Wetter. Leider ist in vielerlei Hinsicht noch weniger klar, wie sich das Wetter, z. B. Mittelwerte und Extreme von Winden und Niederschlägen an einem Ort, bei einem bestimmten globalen Temperaturanstieg verändert. Unsere Forschung zielt auf ein besseres Verständnis ausgewählter grundlegender Prozesse und Elemente des Erdklimas ab, die dazu beitragen können, diese beiden Fragen, nach der Klimasensitivität und der Veränderung der Wettermuster bei globalen Temperaturänderungen, einzugrenzen.
Im Folgenden stellen wir unsere aktuellen Forschungsbereiche und die Instrumente vor, die wir zur Beantwortung dringender Forschungsfragen einsetzen:
Die Tropen
Die obere tropische Troposphäre ist ein faszinierender Teil der Atmosphäre, in dem Zusammensetzung und Erwärmung durch Konvektion und Strahlung die thermische Struktur bestimmen, die wiederum die großräumige Zirkulation beeinflusst. Die Arbeit unserer Gruppe konzentriert sich auf das Verständnis der verschiedenen Beiträge zum vertikalen Temperaturgradienten in dieser Region und seiner Auswirkungen. Eine seit langem bestehende Frage in der Klimaforschung ist das Verhalten dieses Teils der Atmosphäre bei globaler Erwärmung. Im Allgemeinen simulieren Modelle eine stärkere Erwärmung der oberen Troposphäre als aus Satelliten- oder Radiosondendaten hervorgeht. Wir bemühen uns um ein besseres Verständnis dieser Diskrepanz.
Strahlungsantriebe, Rückkopplungen und Klimasensitivität
Es wird angenommen, dass die globale Erwärmung den Auftrieb von Luftmassen in der UTLS-Region, d. h. in der oberen Troposphäre und unteren Stratosphäre, beschleunigt. Diese Zirkulationsänderung beeinflusst die thermische Struktur der UTLS sowohl direkt als auch indirekt über Veränderungen bei Ozon und Wasserdampf. All diese Veränderungen wirken auf die Erwärmung zurück und beeinflussen die Klimasensitivität. Wir versuchen, das Ausmaß dieser Auswirkungen besser zu quantifizieren.
Ein weiterer Aspekt, den wir untersuchen, ist, dass nicht nur Treibhausgase, sondern auch Aerosole, z. B. von Vulkanausbrüchen, die globale Temperatur beeinflussen können. Es wird jedoch angenommen, dass der Antrieb durch vulkanische Aerosole dies weniger effektiv tut als ein gleich starker Antrieb durch, z.B. CO2. Wir versuchen zu verstehen, ob und warum dies der Fall ist, und wie dies mit der räumlichen Struktur der Antriebe und Rückkopplungen zusammenhängen könnte.
Die Albedo der Erde
Eine Besonderheit der Erdatmosphäre ist, dass der Planet auf der Nordhalbkugel genauso viel Sonnenstrahlung reflektiert wie auf der Südhalbkugel, obwohl die Oberfläche im Norden heller ist. Wolken gleichen diesen Oberflächenunterschied aus, aber es ist unklar, ob dies zufällig geschieht oder ob der Ausgleich auf einen physikalischen Mechanismus zurückzuführen ist. Das ist der Grund, warum wir untersuchen, was die Albedo der Erde bestimmt.
Unsere Werkzeuge
Ein wichtiger Schritt für ein besseres konzeptionelles Verständnis der thermischen Struktur der tropischen Atmosphäre war die Entwicklung des 1D-Strahlungs-Konvektions-Gleichgewichtsmodells "konrad". Wir sehen dieses Werkzeug als das einfachste Element einer Modellhierarchie, die wir zur Beantwortung unserer Fragen verwenden. Am anderen Ende der Hierarchie stehen die Sapphire-Konfigurationen des Erdsystemmodells ICON, die eine horizontale Maschenweite von einigen Kilometern haben und explizit die Konvektion auflösen, ein Prozess, der für die thermische Struktur der Tropen entscheidend ist. Um eine Modellhierarchie zu schaffen, die es uns ermöglicht, die Rolle der Zusammensetzung besser zu verstehen, haben wir das wenig rechenintensive, lineare Cariolle-Ozonschema in ICON implementiert und seinen wissenschaftlichen Nutzen bewertet. Dies ergänzt frühere Entwicklungen von vereinfachten Darstellungen der atmosphärischen Zusammensetzung, den "Simple Plumes" und den "Easy Volcanic Aerosol" Generator für troposphärische bzw. vulkanische Aerosole, die beide von unserer Gruppe unterstützt wurden.
Gruppenmitglieder und Publikationen
- Bao, J., Stevens, B., Kluft, L. & Muller, C. (2024). Intensification of tropical precipitation extremes from more organized convection. Science Advances, 10: eadj6801. doi:10.1126/sciadv.adj6801 [supplementary-material][publisher-version]
- Günther, M., Schmidt, H., Timmreck, C. & Toohey, M. (2024). Why does stratospheric aerosol forcing strongly cool the warm pool?. Atmospheric Chemistry and Physics Discussions, 24, 7203-7225. doi:10.5194/acp-24-7203-2024 [publisher-version]
- Hegde, R., Günther, M., Schmidt, H. & Kroll, C. (2024). Surface temperature dependence of stratospheric sulfate aerosol clear-sky forcing and feedback (under open discussion). EGUsphere, . doi:10.5194/egusphere-2024-2221 [Preprint] [pre-print][research-data]
- Kroll, C., Fueglistaler, S., Schmidt, H., Dauhut, T. & Timmreck, C. (2024). The impact of stratospheric aerosol heating on the frozen hydrometeor transport pathways in the tropical tropopause layer. Environmental Research Letters, 19: 044039. doi:10.1088/1748-9326/ad33d0 [supplementary-material][publisher-version]
- Morr, A., Riechers, K., Gorjão, L. & Boers, N. (2024). Anticipating critical transitions in multidimensional systems driven by time- and state-dependent noise. Physical Review Research, 6: 033251. doi:10.1103/PhysRevResearch.6.033251 [publisher-version]
- Römer, F., Buehler, S., Kluft, L. & Pincus, R. (2024). Effect of uncertainty in water vapor continuum absorption on CO2 forcing, longwave feedback, and climate sensitivity. Journal of Advances in Modeling Earth Systems, 16: e2023MS004157. doi:10.1029/2023MS004157 [publisher-version]
- Schmidt, H., Rast, S., Bao, J., Fang, S.-W., Jiménez de la Cuesta Otero, D., Keil, P., Kluft, L., Kroll, C., Lang, T., Niemeier, U., Schneidereit , A., Williams , A. & Stevens, B. (2024). Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model. Geoscientific Model Development, 17, 1563-1584. doi:10.5194/egusphere-2023-1575 [supplementary-material][publisher-version]
- Blanco, J., Caballero, R., Datseris, G., Stevens, B., Bony, S., Hadas, O. & Kaspi, Y. (2023). A cloud-controlling factor perspective on the hemispheric asymmetry of extratropical cloud albedo. Journal of Climate, 36, 1793-1804 . doi:10.1175/JCLI-D-22-0410.1 [publisher-version]
- Crueger, T., Schmidt, H. & Stevens, B. (2023). Hemispheric albedo asymmetries across three phases of CMIP. Journal of Climate, 36, 5267-5280. doi:10.1175/JCLI-D-22-0923.1 [publisher-version]
- Ghosh, R., Putrasahan, D., Manzini, E., Lohmann, K., Keil, P., Hand, R., Bader, J., Matei, D. & Jungclaus, J. (2023). Two distinct phases of North Atlantic eastern subpolar gyre and warming hole evolution under global warming. Journal of Climate, 36, 1881-1894. doi:10.1175/JCLI-D-22-0222.1 [publisher-version][supplementary-material]
- Hadas, O., Datseris, G., Blanco, J., Bony, S., Caballero, R., Stevens, B. & Kaspi, Y. (2023). The role of baroclinic activity in controlling Earth’s albedo in the present and future climates. Proceedings of the National Academy of Sciences of the United States of America, 120: e2208778120. doi:10.1073/pnas.2208778120 [publisher-version][supplementary-material]
- Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S., Behravesh, M., Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R., Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M., Gutjahr, O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger, T., Naumann, A., Paccini, L., Peinado, A., Praturi, D., Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H., Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C., von Storch, J., Vogel, R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J. & Stevens, B. (2023). ICON-Sapphire: simulating the components of the Earth System and their interactions at kilometer and subkilometer scales. Geoscientific Model Development, 16, 779-811. doi:10.5194/gmd-16-779-2023 [publisher-version]
- Hu, Y., Lin, Y., Deng, Y. & Bao, J. (2023). Summer extreme rainfall over the middle and lower reaches of Yangtze River: Role of synoptic patterns in historical changes and future projections. Journal of Geophysical Research: Atmospheres, 128: e2023JD039608. doi:10.1029/2023JD039608
- Jiménez de la Cuesta Otero, D. (2023). The varying earth’s radiative feedback connected to the ocean energy uptake: A theoretical perspective from conceptual frameworks. Journal of Climate, 36, 2367-2385. doi:10.1175/JCLI-D-22-0345.1 [publisher-version]
- Keil, P., Schmidt, H., Stevens, B., Byrne, M., Segura, H. & Putrasahan, D. (2023). Tropical tropospheric warming pattern explained by shifts in convective heating in the Matsuno-Gill Model. Quarterly Journal of the Royal Meteorological Society, 149, 2678-2695. doi:10.1002/qj.4526 [publisher-version]
- Kroll, C., Fueglistaler, S., Schmidt, H., Kornblueh, L. & Timmreck, C. (2023). The sensitivity of moisture flux partitioning in the cold-point tropopause to external forcing. Geophysical Research Letters, 50: e2022GL102262. doi:10.1029/2022GL102262 [supplementary-material][publisher-version]
- Lang, T., Naumann, A., Buehler, S., Stevens, B., Schmidt, H. & Aemisegger, F. (2023). Sources of uncertainty in mid-tropospheric tropical humidity in global storm-resolving simulations. Journal of Advances in Modeling Earth Systems, 15: e2022MS003443. doi:10.1029/2022MS003443 [publisher-version]
- Marquez, J., Bartsch, R., Günther, M., Hasan, S., Koren, O., Plotnik, M. & Bai, O. (2023). Supplementary motor area activity differs in Parkinson’s Disease with and without freezing of Gait. Parkinson's Disease, 2023: 5033835. doi:10.1155/2023/5033835 [publisher-version]
- Stevens, B. & Kluft, L. (2023). A colorful look at climate sensitivity. Atmospheric Chemistry and Physics, 23, 14673-14689. doi:10.5194/acp-23-14673-2023 [pre-print][publisher-version]
- Wallis, S., Schmidt, H. & von Savigny, C. (2023). Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations. Atmospheric Chemistry and Physics, 23, 7001-7014. doi:10.5194/acp-23-7001-2023 [publisher-version][supplementary-material]
- Windmiller, J., Bao, J., Sherwood, S., Schanzer, T. & Fuchs, D. (2023). Predicting convective downdrafts from updrafts and environmental conditions in a global storm resolving simulation. Journal of Advances in Modeling Earth Systems, 15: e2022MS003048. doi:10.1029/2022MS003048 [supplementary-material][publisher-version]
- Bao, J., Dixit, V. & Sherwood, S. (2022). Zonal temperature gradients in the tropical free troposphere. Journal of Climate, 35, 4337-4348 . doi:10.1175/JCLI-D-22-0145.1 [publisher-version]
- Datseris, G., Blanco, J., Hadas, O., Bony, S., Caballero, R., Kaspi, Y. & Stevens, B. (2022). Minimal recipes for global cloudiness. Geophysical Research Letters, 49: e2022GL099678. doi:10.1029/2022GL099678 [publisher-version]
- Datseris, G., Vahdati, A. & Dubois, T. (2022). Agents.jl: A performant and feature-full agent based modelling software of minimal code complexity. Simulation. doi:10.1177/00375497211068820 [publisher-version]
- Datseris, G. & Parlitz, U. (2022). Nonlinear dynamics: A concise introduction interlaced with Code. Cham: Springer. doi:10.1007/978-3-030-91032-7
- Datseris, G. & Wagemakers, A. (2022). Effortless estimation of basins of attraction. Chaos, 32: 023104. doi:10.1063/5.0076568 [publisher-version]
- Fabian, T., Walzek, L., Burgdoerfer, J., Libisch, F. & Datseris, G. (2022). Particlelike valleytronics in graphene. Physical Review B, 106: 125419. doi:10.1103/PhysRevB.106.125419
- Fang, S.-W., Timmreck, C., Jungclaus, J., Krüger , K. & Schmidt, H. (2022). On the additivity of climate responses to the volcanic and solar forcing in the early 19th century.. Earth System Dynamics, 13, 1535-1555. doi:10.5194/esd-13-1535-2022 [pre-print][supplementary-material][publisher-version]
- Giorgetta, M., Sawyer, W., Lapillonne, X., Adamidis, P., Alexeev, D., Clement, V., Dietlicher, R., Engels, J., Esch, M., Franke, H., Frauen, C., Hannah, W., Hillman, B., Kornblueh, L., Marti, P., Norman, M., Pincus, R., Rast, S., Reinert, D., Schnur, R., Schulzweida, U. & Stevens, B. (2022). The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514). Geoscientific Model Development, 15, 6985-7016. doi:10.5194/gmd-15-6985-2022 [publisher-version]
- Günther, M., Schmidt, H., Timmreck, C. & Toohey, M. (2022). Climate feedback to stratospheric aerosol forcing: the key role of the pattern effect. Journal of Climate, 35, 4303-4317. doi:10.1175/JCLI-D-22-0306.1 [publisher-version]
- Günther, M., Kantelhardt, J. & Bartsch, R. (2022). The reconstruction of causal networks in physiology. Frontiers in Network Physiology, 2: 893743. doi:10.3389/fnetp.2022.893743 [publisher-version]
- Jiménez de la Cuesta Otero, D. & Schmidt, H. (2022). Tropical stratospheric upwelling sets the tropical equilibrium climate sensitivity by reducing the effective forcing.
- Jungclaus, J., Lorenz, S., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crueger, T., de Vrese, P., Gayler, V., Giorgetta, M., Gutjahr, O., Haak, H., Hagemann , S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W., Nabel, J., Notz, D., Pohlmann, H., Putrasahan, D., Raddatz, T., Ramme, L., Redler, R., Reick, C., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B., Marotzke, J. & Claussen, M. (2022). The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 14: e2021MS002813. doi:10.1029/2021MS002813 [publisher-version]
- Salzmann, M., Ferrachat, S., Tully, C., Munch, S., Watson-Parris, D., Neubauer, D., Siegenthaler-LeDrian, C., Rast, S., Heinold, B., Crueger, T., Brokopf, R., Muelmenstadt, J., Quaas, J., Wan, H., Zhang, K., Lohmann, U., Stier, P. & Tegen, I. (2022). The global atmosphere-aerosol model ICON-A-HAM2.3-Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness. Journal of Advances in Modeling Earth Systems, 14: e2021MS002699. doi:10.1029/2021MS002699 [publisher-version]
- Sinnhuber, M., Nesse Tyssøy, H., Asikainen, T., Bender, S., Funke, B., Hendrickx, K., Pettit, J., Reddmann, T., Rozanov, E., Schmidt, H., Smith-Johnsen, C., Sukhodolov, T., Szeląg, M., van de Kamp, M., Verronen, P., Wissing, J. & Yakovchuk, O. (2022). Heppa III intercomparison experiment on electron precipitation impacts: 2. Model-measurement intercomparison of Nitric Oxide (NO) during a geomagnetic storm in April 2010. Journal of Geophysical Research: Space Physics, 127: e2021JA029466. doi:10.1029/2021JA029466 [publisher-version]
- Vogel, A., Alessa, G., Scheele, R., Weber, L., Dubovik, O., North, P. & Fiedler, S. (2022). Uncertainty in aerosol optical depth from modern aerosol-climate models, reanalyses, and satellite products. Journal of Geophysical Research: Atmospheres, 127: e2021JD035483. doi:10.1029/2021JD035483 [publisher-version]
- Wang, X., Wang, C., Zhao, G., Ding, H. & Yu, M. (2022). Research progress of forest fires spread trend forecasting in Heilongjiang Province. Atmosphere, 13: 2110. doi:10.3390/atmos13122110 [publisher-version]
- Azoulay, A., Schmidt, H. & Timmreck, C. (2021). The Arctic polar vortex response to volcanic forcing of different strengths. Journal of Geophysical Research: Atmospheres, 126: e2020JD034450. doi:10.1029/2020JD034450 [supplementary-material][publisher-version]
- Bao , J. & Stevens, B. (2021). The elements of the thermodynamic structure of the tropical atmosphere. Journal of the Meteorological Society of Japan, 99, 1483-1499. doi:10.2151/jmsj.2021-072 [publisher-version]
- Bao , J. & Windmiller, J. (2021). Impact of microphysics on tropical precipitation extremes in a global storm-resolving model. Geophysical Research Letters, 48: e2021GL094206. doi:10.1029/2021GL094206 [publisher-version][supplementary-material]
- Bao , J., Stevens, B., Kluft, L. & Jiménez de la Cuesta, D. (2021). Changes in the tropical lapse rate due to entrainment and their impact on climate sensitivity. Geophysical Research Letters, 48: e2021GL094969. doi:10.1029/2021GL094969 [supplementary-material][publisher-version]
- Bourdin, S., Kluft, L. & Stevens, B. (2021). Dependence of climate sensitivity on the given distribution of relative humidity. Geophysical Research Letters, 48: e2021GL092462. doi:10.1029/2021GL092462 [publisher-version]
- Datseris, G. & Stevens, B. (2021). Earth’s albedo and its symmetry. AGU Advances, 2: e2021AV000440. doi:10.1029/2021AV000440 [publisher-version]
- Karpechko, A., Tyrrell, N. & Rast, S. (2021). Sensitivity of QBO teleconnection to model circulation biases. Quarterly Journal of the Royal Meteorological Society, 147, 2147-2159. doi:10.1002/qj.4014
- Keil, P., Schmidt, H., Stevens, B. & Bao , J. (2021). Variations of tropical lapse rates in climate models and their implications for upper tropospheric warming. Journal of Climate, 34, 9747-9761. doi:10.1175/JCLI-D-21-0196.1 [publisher-version]
- Khabbazan, M., Stankoweit, M., Roshan, E., Schmidt, H. & Held, H. (2021). How can solar geoengineering and mitigation be combined under climate targets?. Earth System Dynamics, 12, 1529-1542. doi:10.5194/esd-12-1529-2021 [publisher-version]
- Kluft, L., Dacie, S., Brath, M., Buehler, S. & Stevens, B. (2021). Temperature-dependence of the clear-sky feedback in radiative-convective equilibrium. Geophysical Research Letters, 48: e2021GL094649. doi:10.1029/2021GL094649 [publisher-version]
- Knizhnik, K., Leake, J., Linton, M. & Dacie, S. (2021). The rise and emergence of untwisted toroidal flux ropes on the sun. Astrophysical Journal, 907: 19. doi:10.3847/1538-4357/abccc0 [publisher-version]
- Kraemer, K., Datseris, G., Kurths, J., Kiss, I., Ocampo-Espindola, J. & Marwan, N. (2021). A unified and automated approach to attractor reconstruction. New Journal of Physics, 23: 033017. doi:10.1088/1367-2630/abe336 [publisher-version]
- Kroll , C., Dacie, S., Azoulay, A., Schmidt, H. & Timmreck, C. (2021). The impact of volcanic eruptions of different magnitude on stratospheric water vapour in the tropics. Atmospheric Chemistry and Physics, 21, 6565-6591. doi:10.5194/acp-21-6565-2021 [supplementary-material][publisher-version]
- Li, C., Brasseur, G., Schmidt, H. & Mellado, J. (2021). Error induced by neglecting subgrid chemical segregation due to inefficient turbulent mixing in regional chemical-transport models in urban environments. Atmospheric Chemistry and Physics, 21, 483-503. doi:10.5194/acp-21-483-2021 [supplementary-material][publisher-version]
- Stober, G., Kuchar, A., Pokhotelov, D., Liu, H., Liu, H.-L., Schmidt, H., Jacobi, C., Baumgarten, K., Brown, P., Janches, D., Murphy, D., Kozlovsky, A., Lester, M., Belova, E., Kero, J. & Mitchell, N. (2021). Interhemispheric differences of mesosphere-lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations. Atmospheric Chemistry and Physics, 21, 13855-13902. doi:10.5194/acp-21-13855-2021 [publisher-version]
- Thornhill, G., Collins, W., Olivié, D., Skeie, R., Archibald, A., Bauer, S., Checa-Garcia, R., Fiedler, S., Folberth, G., Gjermundsen, A., Horowitz, L., Lamarque, J.-F., Michou, M., Mulcahy, J., Nabat, P., Naik, V., O'Connor, F., Paulot, F., Schulz, M., Scott, C., Séférian, R., Smith, C., Takemura, T., Tilmes, S., Tsigaridis, K. & Weber, J. (2021). Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 21, 1105-1126. doi:10.5194/acp-21-1105-2021 [publisher-version][supplementary-material]
- Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T., Schmidt, H., Toohey, M., Wu, C.-J. & Claussen, M. (2020). Global temperature modes shed light on the Holocene temperature conundrum. Nature Communications, 11: 4726. doi:10.1038/s41467-020-18478-6 [publisher-version]
- Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Malavelle, F., Lohmann, U., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D. & Stevens, B. (2020). Bounding aerosol radiative forcing of climate change. Reviews of Geophysics, 58: e2019RG000660. doi:10.1029/2019RG000660 [publisher-version]
- Dacie, S. (2020). Using simple models to understand changes in the tropical mean atmosphere under warming. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 233. doi:10.17617/2.3243249 [publisher-version]
- Fiedler, S., Crueger, T., D'Agostino, R., Peters, K., Becker, T., Leutwyler, D., Paccini, L., Burdanowitz, J., Buehler, S., Uribe, A., Dauhut, T., Dommenget, D., Fraedrich, K., Jungandreas, L., Maher, N., Naumann, A., Rugenstein, M., Sakradzija, M., Schmidt, H., Sielmann, F., Stephan, C., Timmreck, C., Zhu , X. & Stevens, B. (2020). Simulated tropical precipitation assessed across three major phases of the Coupled Model Intercomparison Project (CMIP). Monthly Weather Review, 148, 3653-3680. doi:10.1175/MWR-D-19-0404.1 [publisher-version][supplementary-material]
- Fröb, F., Sonntag, S., Pongratz, J., Schmidt, H. & Ilyina, T. (2020). Detectability of artificial ocean alkalinization and stratospheric aerosol injection in MPI-ESM. Earth's Future, 8: e2020EF001634. doi:10.1029/2020EF001634 [publisher-version]
- Jiménez de la Cuesta Otero, D. (2020). Historical warming and climate sensitivity. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 231. doi:10.17617/2.3243040 [publisher-version]
- Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D. & Ghosh, R. (2020). Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 10, 667-671. doi:10.1038/s41558-020-0819-8 [supplementary-material]
- Matthes, K., Biastoch, A., Wahl, S., Harlaß, J., Martin, T., Brücher, T., Drews, A., Ehlert, D., Getzlaff, K., Krüger, F., Rath, W., Scheinert, M., Schwarzkopf, F., Bayr, T., Schmidt, H. & Park, W. (2020). The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): Mean state and variability. Geoscientific Model Development, 13, 2533-2568. doi:10.5194/gmd-13-2533-2020 [publisher-version]
- Meraner, K., Rast, S. & Schmidt, H. (2020). How useful is a linear ozone parameterization for global climate modeling?. Journal of Advances in Modeling Earth Systems, 12: e2019MS002003. doi:10.1029/2019MS002003 [supplementary-material][publisher-version]
- Stevens, B., Acquistapace, C., Hansen, A., Heinze, R., Klinger, C., Klocke, D., Schubotz, W., Windmiller, J., Adamidis, P., Arka, I., Barlakas, V., Biercamp, J., Brueck, M., Brune, S., Buehler, S., Burkhardt, U., Cioni, G., Costa-Surós, M., Crewell, S., Crueger, T., Deneke, H., Friederichs, P., Henken, C., Hohenegger, C., Jacob, M., Jakub, F., Kalthoff, N., Köhler, M., van Laar, T., Li, P., Lohnert, U., Macke, A., Madenach, N., Mayer, B., Nam, C., Naumann, A., Peters, K., Poll, S., Quaas, J., Röber, N., Rochetin, N., Rybka, H., Scheck, L., Schemann, V., Schnitt, S., Seifert, A., Senf, F., Shapkalijevski, M., Simmer, C., Singh, S., Sourdeval, O., Spickermann, D., Strandgren, J., Tessiot, O., Vercauteren, N., Vial, J., Voigt, A. & Zängl, G. (2020). The added value of large-eddy and storm-resolving models for simulating clouds and precipitation. Journal of the Meteorological Society of Japan, 98, 395-435. doi:10.2151/jmsj.2020-021 [publisher-version]
- Tyrrell, N., Karpechko, A. & Rast, S. (2020). Siberian snow forcing in a dynamically bias-corrected model. Journal of Climate, 33, 10455-10467. doi:10.1175/JCLI-D-19-0966.1 [publisher-version][supplementary-material]
- von Savigny, C., Timmreck, C., Buehler, S., Burrows, J., Giorgetta, M., Hegerl, G., Horvath, A., Hoshyaripour, G., Hoose, C., Quaas, J., Malinina, E., Rozanov, A., Schmidt, H., Thomason, L., Toohey, M. & Vogel, B. (2020). The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption. Meteorologische Zeitschrift, 3-18. doi:10.1127/metz/2019/0999 [publisher-version]
- Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G. & Reinert, D. (2019). The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0). Geoscientific Model Development, 12, 3541-3569. doi:10.5194/gmd-12-3541-2019 [publisher-version][supplementary-material]
- Dacie, S., Kluft, L., Schmidt, H., Stevens, B., Buehler, S., Nowack, P., Dietmüller, S., Abraham, L. & Birner, T. (2019). A 1D RCE study of some factors which might affect the tropical tropopause layer and surface climate. Journal of Climate, 32, 6769-6782. doi:10.1175/JCLI-D-18-0778.1 [publisher-version]
- Fiedler, S., Kinne, S., Huang, W., Räisänen, P., O'Donnell, D., Bellouin, N., Stier, P., Merikanto, J., van Noije, T., Carslaw, K., Makkonen, R. & Lohmann, U. (2019). Anthropogenic aerosol forcing - insights from multi-estimates from aerosol-climate models with reduced complexity. Atmospheric Chemistry and Physics, 19, 6821-6841. doi:10.5194/acp-19-6821-2019 [publisher-version]
- Fiedler, S., Stevens, B., Gidden, M., Smith, S., Riahi, K. & van Vuuren, D. (2019). First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect. Geoscientific Model Development, 12, 989-1007. doi:10.5194/gmd-12-989-2019 [publisher-version][supplementary-material]
- Gruzdev, A., Bezverkhnii, V., Schmidt, H. & Brasseur, G. (2019). Effects of solar activity variations on dynamical processes in the atmosphere: Analysis of empirical data and modeling. IOP Conference Series: Earth and Environmental Science, 231: 012021. doi:10.1088/1755-1315/231/1/012021 [publisher-version]
- Jiménez de la Cuesta, D. & Mauritsen, T. (2019). Emergent constraints on Earth's transient and equilibrium response to doubled CO2 by post-1970s global warming. Nature Geoscience, 12, 902-905. doi:10.1038/s41561-019-0463-y [supplementary-material]
- Kang, S., Hawcroft, M., Xiang, B., Hwang, Y.-T., Kim, H., Cazes, G., Codron, F., Crueger, T., Deser, C., Hodnebrog, Ø., Kim, J., Kosaka, Y., Losada, T., Mechoso, C., Myhre, G., Seland, Ø., Stevens, B., Watanabe, M. & Yu, S. (2019). Extratropical-Tropical INteraction Model Intercomparison Project (ETIN-MIP): Protocol and initial results. Bulletin of the American Meteorological Society, 100, 2589-2606. doi:10.1175/BAMS-D-18-0301.1 [publisher-version][supplementary-material]
- Kluft, L., Dacie, S., Buehler, S., Schmidt, H. & Stevens, B. (2019). Re-examining the first climate models: Climate sensitivity of a modern radiative-convective equilibrium model. Journal of Climate, 32, 8111-8125. doi:10.1175/JCLI-D-18-0774.1 [publisher-version]
- Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Popke, D., Gayler, V., Giorgetta, M., Goll, D., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jiménez de la Cuesta Otero, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W., Nabel, J., Nam, C., Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T., Rast, S., Redler, R., Reick, C., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., de Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Roeckner, E. & Winkler, A. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998-1038. doi:10.1029/2018MS001400 [publisher-version]
- Misios, S., Gray, L., Knudsen, M., Karoff, C., Schmidt, H. & Haigh, J. (2019). Slowdown of the Walker circulation at solar cycle maximum. Proceedings of the National Academy of Sciences, 116, 7186-7191. doi:10.1073/pnas.1815060116 [publisher-version]
- Pfrommer, T., Goeschl, T., Proelss, A., Carrier, M., Lenhard, J., Martin, H., Niemeier, U. & Schmidt, H. (2019). Establishing causation in climate litigation: admissibility and reliability. Climatic Change, 152, 67-84. doi:10.1007/s10584-018-2362-4
- Stephan, C., Strube, C., Klocke, D., Ein, M., Hoffmann , L., Preusse, P. & Schmidt, H. (2019). Gravity waves in global high-resolution simulations with explicit and parameterized convection. Journal of Geophysical Research - Atmospheres, 124, 4446-4459. doi:10.1029/2018JD030073 [publisher-version]
- Stephan, C., Strube, C., Klocke, D., Ein, M., Hoffmann, L., Preusse, P. & Schmidt, H. (2019). Intercomparison of gravity waves in convection-permitting models. Journal of the Atmospheric Sciences, 76, 2739-2759. doi:10.1175/JAS-D-19-0040.1 [publisher-version]
- Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B. & Lohmann, U. (2019). The aerosol-climate model ECHAM6.3-HAM2.3 - Part 1: Aerosol evaluation.. Geoscientific Model Development, 12, 1643-1677. doi:10.5194/gmd-2018-235 [publisher-version]
- Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M. & Wilson, R. (2019). Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nature Geoscience, 12, 100-107. doi:10.1038/s41561-018-0286-2
- Crueger, T., Giorgetta, M., Brokopf, R., Esch, M., Fiedler, S., Hohenegger, C., Kornblueh, L., Mauritsen, T., Nam, C., Naumann, A., Peters, K., Rast, S., Roeckner, E., Schmidt, H., Sakradzija, M., Vial, J., Vogel, R. & Stevens, B. (2018). ICON-A: the atmospheric component of the ICON Earth System Model. Part II: Model evaluation. Journal of Advances in Modeling Earth Systems, 10, 1638-1662. doi:10.1029/2017MS001233 [publisher-version]
- Federico Conte, J., Chau, J., Laskar, F., Stober, G., Schmidt, H. & Brown, P. (2018). Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere. Annales Geophysicae, 36, 999-1008. doi:10.5194/angeo-36-999-2018 [publisher-version]
- Ferrer-Gonzalez, M., Ilyina, T., Sonntag, S. & Schmidt, H. (2018). Enhanced rates of regional warming and ocean acidification after termination of large-scale ocean alkalinization. Geophysical Research Letters, 45, 7120-7129. doi:10.1029/2018GL077847 [publisher-version]
- Fiedler, S. (2018). Expedition to the North Atlantic with RV MARIA S. MERIAN. Hamburg: Max-Planck-Institut für Meteorologie. [publisher-version]
- Giorgetta, M., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., Hohenegger, C., Kornblueh, L., Köhler, M., Manzini, E., Mauritsen, T., Nam, C., Raddatz, T., Rast, S., Reinert, D., Sakradzija, M., Schmidt, H., Schneck, R., Schnur, R., Silvers, L., Wan, H., Zängl, G. & Stevens, B. (2018). ICON-A: the atmospheric component of the ICON Earth System Model. Part I: Model description. Journal of Advances in Modeling Earth Systems, 10, 1613-1637. doi:10.1029/2017MS001242 [publisher-version]
- Gruzdev, A., Schmidt, H. & Brasseur, G. (2018). The effect of the 27-day solar cycle on the wave activity of the atmosphere calculated by a chemistry-climate model. Proceedings of SPIE, 10833: 1083399. doi:10.1117/12.2502979
- Klimenko, M., Bessarab, F., Sukhodolov, T., Klimenko, V., Koren'kov, Y., Zakharenkova, I., Chirik, N., Vasil'ev, P., Kulyamin, D., Schmidt, H., Funke, B. & Rozanov, E. (2018). Ionospheric effects of the sudden stratospheric warming in 2009: Results of simulation with the first version of the EAGLE model. Russian Journal of Physical Chemistry B, 12, 760-770. doi:10.1134/S1990793118040103
- Kravitz, B., Rasch, P., Wang, H., Robock, A., Gabriel, C., Boucher, O., Cole, J., Haywood, J., Ji, D., Jones, A., Lenton, A., Moore, J., Muri, H., Niemeier, U., Phipps, S., Schmidt, H., Watanabe, S., Yang, S. & Yoon, J.-H. (2018). The climate effects of increasing ocean albedo: An idealized representation of solar geoengineering. Atmospheric Chemistry and Physics, 18, 13097-13113. doi:10.5194/acp-18-13097-2018 [publisher-version][supplementary-material]
- Lawrence, M., Schäfer, S., Muri, H., Scott, V., Oschlies, A., Vaughan, N., Boucher, O., Schmidt, H., Haywood, J. & Scheffran, J. (2018). Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nature Communications, 9: 3734. doi:10.1038/s41467-018-05938-3 [publisher-version][supplementary-material]
- Maycock, A., Matthes, K., Tegtmeier, S., Schmidt, H., Thiéblemont, R., Hood, L., Akiyoshi, H., Bekki, S., Deushi, M., Jöckel, P., Kirner, O., Kunze, M., Marchand, M., Marsh, D., Michou, M., Plummer, D., Revell, L., Rozanov, E., Stenke, A., Yamashita, Y. & Yoshida, K. (2018). The representation of solar cycle signals in stratospheric ozone - Part 2: Analysis of global models. Atmospheric Chemistry and Physics, 18, 11323-11343. doi:10.5194/acp-18-11323-2018 [publisher-version][supplementary-material]
- Meraner, K. & Schmidt, H. (2018). Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation. Atmospheric Chemistry and Physics, 18, 1079-1089. doi:10.5194/acp-18-1079-2018 [publisher-version][supplementary-material]
- Mikolajewicz, U., Ziemen, F., Cioni, G., Claussen, M., Fraedrich, K., Heidkamp, M., Hohenegger, C., Jiménez de la Cuesta, D., Kapsch, M.-L., Lemburg, A., Mauritsen, T., Meraner, K., Röber, N., Schmidt, H., Six, K., Stemmler, I., Tamarin-Brodsky, T., Winkler, A., Zhu, X. & Stevens, B. (2018). The climate of a retrograde rotating earth. Earth System Dynamics, 9, 1191-1215. doi:10.5194/esd-9-1191-2018 [publisher-version]
- Pedatella, N., Chau, J., Schmidt, H., Goncharenko, L., Stolle, C., Hocke, K., Harvey, V., Funke, B. & Siddiqui, T. (2018). How sudden stratospheric warming affects the whole atmosphere. EOS, 99, 35-38. doi:10.1029/2018EO092441 [publisher-version]
- Rast, S. (2018). Using and programming ICON— a first introduction. Hamburg: Max-Planck-Institut für Meteorologie. [any-fulltext]
- Schultz, M., Stadtler, S., Schröder, S., Taraborrelli, D., Franco, B., Krefting, J., Henrot, A., Ferrachat, S., Lohmann, U., Neubauer, D., Siegenthaler-Le Drian, C., Wahl, S., Kokkola, H., Kühn, T., Rast, S., Schmidt, H., Stier, P., Kinnison, D., Tyndall, G., Orlando, J. & Wespes, C. (2018). The chemistry-climate model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development, 11, 1695-1723. doi:10.5194/gmd-11-1695-2018 [publisher-version][supplementary-material]
- Stephan, C., Klingaman, N., Vidale, P., Turner, A., Demory, M.-E. & Guo, L. (2018). Intraseasonal summer rainfall variability over China in the MetUM GA6 and GC2 configurations. Geoscientific Model Development, 11, 3215-3233. doi:10.5194/gmd-11-3215-2018 [publisher-version]
- Stjern, C., Muri, H., Ahlm, L., Boucher, O., Cole, J., Ji, D., Jones, A., Haywood, J., Kravitz, B., Lenton, A., Moore, J., Niemeier, U., Phipps, S., Schmidt, H., Watanabe, S. & Kristjánsson, J. (2018). Response to marine cloud brightening in a multi-model ensemble. Atmospheric Chemistry and Physics, 18, 621-634. doi:10.5194/acp-18-621-2018 [publisher-version][supplementary-material]
- Thiéblemont, R., Bekki, S., Marchand, M., Bossay, S., Schmidt, H., Meftah, M. & Hauchecorne, A. (2018). Nighttime mesospheric/lower thermospheric tropical ozone response to the 27-day solar rotational cycle: ENVISAT-GOMOS satellite observations versus HAMMONIA idealized chemistry-climate model simulations. Journal of Geophysical Research: Atmospheres, 123, 8883-8896. doi:10.1029/2017JD027789 [publisher-version]
- Zülicke, C., Becker, E., Matthias, V., Peters, D., Schmidt, H., Liu, H.-L., de la Ramos, L. & Mitchell, D. (2018). Coupling of stratospheric warmings with mesospheric coolings in observations and simulations. Journal of Climate, 31, 1107-1133. doi:10.1175/JCLI-D-17-0047.1 [publisher-version]
Weitere Themen
ORCESTRA: Erforschung tropischer Wolken und ihrer Auswirkungen auf das Klima
Am 10. August hatte ORCESTRA (das Orchester) seinen ersten Auftritt auf den Kapverden. PERCUSION (die Trommel) gibt den Takt vor, indem sie über dem…
Wie umgehen mit dem 1,5-Grad-Ziel?
In einem Positionspapier hat das Deutsche Klima-Konsortium, zu dessen Mitgliedern das Max-Planck-Institut für Meteorologie gehört, Empfehlungen zum…