Global Circulation and Climate

There is overwhelming scientific consensus that increasing greenhouse gas concentrations cause global warming. However, it is still under discussion how much warming exactly will occur, for example, for a doubling of the atmospheric carbon dioxide (CO2) concentration, a quantity known as climate sensitivity. Moreover, humans are not experiencing global mean temperature but daily weather. Unfortunately, it is in many aspects even less clear how weather, for example means and extremes of winds and precipitation, is changing with a certain global temperature increase. Our research aims at better understanding selected basic features of Earth’s climate that may help to constrain these two issues, climate sensitivity and the change of weather patterns under global temperature changes.

In the following, we highlight our current research areas and the tools we use to answer pressing research questions. 

The tropics

The tropical upper troposphere is a fascinating part of the atmosphere where composition and heating, from convection and radiation, set the thermal structure which in turn influences large-scale circulation. Work in our group focusses on understanding the different contributions to this region’s lapse rate (the decrease in air temperature with altitude) and its implications. A long standing issue in climate research is the behavior of this part of the atmosphere under global warming. In general, models simulate a stronger upper tropospheric warming than deduced from satellite or radiosonde data. We are working towards a better understanding of this discrepancy.


Climate forcing, feedbacks, and sensitivity

Global warming is thought to accelerate the upwelling of air masses in the UTLS region, i.e. the upper troposphere and lower stratosphere. This circulation change influences the thermal structure of the UTLS both directly and indirectly via changes in ozone and water vapour. All these changes would feed back on the warming and affect climate sensitivity. We try to better quantify the magnitude of these effects.

Another aspect we are investigating is that not only greenhouse gases but also aerosol forcing, for instance from volcanic eruptions, can affect global temperature. It is assumed, however, that the forcing from volcanic aerosols does this less effectively. We try to understand if and why this is the case, and how this may be related to the spatial structure of forcings and feedbacks.

Earth’s albedo

A curiosity of Earth’s atmosphere is that the planet reflects as much solar radiation in the Northern as in the Southern hemisphere, despite the surface being brighter in the North. Clouds compensate for this surface difference, but it is unclear if this happens by accident or if the compensation is due to a physical mechanism. That is the reason why we investigate what defines Earth’s albedo. 


Our Tools

An important step for a better conceptual understanding of the thermal structure of the tropical atmosphere was the development of the 1D-radiative convective equilibrium model “konrad”. We see this tool as the simplest element of a model hierarchy that we are using to answer our questions. On the other end of the hierarchy are the Sapphire configurations of the Earth system model ICON, which have a horizontal mesh size of a few kilometers and explicitly resolve convection, a process that is crucial for the thermal structure of the tropics. Likewise, to establish a model hierarchy enabling us to better understand the role of composition we have implemented the computationally cheap, linear Cariolle ozone scheme in ICON and assessed its scientific usefulness. This adds to earlier developments of simplified representations of composition, the “Simple Plumes” and the “Easy Volcanic Aerosol” generator for tropospheric and volcanic aerosols, respectively.

Group members and publications

Student Helper
Phd Candidate
Student Helper
Scientific Programmer
  • Blanco, J., Caballero, R., Datseris, G., Stevens, B., Bony, S., Hadas, O. & Kaspi, Y. (2023). A cloud-controlling factor perspective on the hemispheric asymmetry of extratropical cloud albedo. Journal of Climate, 36, 1793-1804 . doi:10.1175/JCLI-D-22-0410.1 [ Fulltext]
  • Crueger, T., Schmidt, H. & Stevens, B. (in press). Hemispheric albedo asymmetries across three phases of CMIP. Journal of Climate: early online release. doi:10.1175/JCLI-D-22-0923.1
  • Ghosh, R., Putrasahan, D., Manzini, E., Lohmann, K., Keil, P., Hand, R., Bader, J., Matei, D. & Jungclaus, J. (2023). Two distinct phases of North Atlantic eastern subpolar gyre and warming hole evolution under global warming. Journal of Climate, 36, 1881-1894. doi:10.1175/JCLI-D-22-0222.1 [ Fulltext]
  • Hadas, O., Datseris, G., Blanco, J., Bony, S., Caballero, R., Stevens, B. & Kaspi, Y. (2023). The role of baroclinic activity in controlling Earth’s albedo in the present and future climates. Proceedings of the National Academy of Sciences of the United States of America, 120: e2208778120. doi:10.1073/pnas.2208778120 [ Fulltext] [ Fulltext]
  • Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S., Behravesh, M., Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R., Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M., Gutjahr, O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S., Kroll , C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger , T., Naumann, A., Paccini, L., Peinado, A., Praturi, D., Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H., Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C., von Storch, J., Vogel, R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J. & Stevens, B. (2023). ICON-Sapphire: simulating the components of the Earth System and their interactions at kilometer and subkilometer scales. Geoscientific Model Development, 16, 779-811. doi:10.5194/gmd-16-779-2023 [ Fulltext]
  • Jiménez de la Cuesta Otero, D. (2023). The varying earth’s radiative feedback connected to the ocean energy uptake: A theoretical perspective from conceptual frameworks. Journal of Climate, 36, 2367-2385. doi:10.1175/JCLI-D-22-0345.1
  • Kroll, C., Fueglistaler, S., Schmidt, H., Kornblueh, L. & Timmreck, C. (in press). The sensitivity of moisture flux partitioning in the cold-point tropopause to external forcing. Geophysical Research Letters. [ Fulltext]
  • Windmiller, J., Bao, J., Sherwood, S., Schanzer, T. & Fuchs, D. (2023). Predicting convective downdrafts from updrafts and environmental conditions in a global storm resolving simulation. Journal of Advances in Modeling Earth Systems, 15: e2022MS003048. doi:10.1029/2022MS003048 [ Fulltext] [ Fulltext]
  • Bao, J., Dixit, V. & Sherwood, S. (2022). Zonal temperature gradients in the tropical free troposphere. Journal of Climate, 35, 4337-4348 . doi:10.1175/JCLI-D-22-0145.1
  • Datseris, G., Blanco, J., Hadas, O., Bony, S., Caballero, R., Kaspi, Y. & Stevens, B. (2022). Minimal recipes for global cloudiness. Geophysical Research Letters, 49: e2022GL099678. doi:10.1029/2022GL099678 [ Fulltext]
  • Datseris, G. & Parlitz, U. (2022). Nonlinear dynamics: A concise introduction interlaced with Code. Cham: Springer. doi:10.1007/978-3-030-91032-7
  • Datseris, G. & Wagemakers, A. (2022). Effortless estimation of basins of attraction. Chaos, 32: 023104. doi:10.1063/5.0076568 [ Fulltext]
  • Datseris, G., Vahdati, A. & Dubois, T. (2022). Agents.jl: A performant and feature-full agent based modelling software of minimal code complexity. Simulation. doi:10.1177/00375497211068820 [ Fulltext]
  • Fabian, T., Walzek, L., Burgdoerfer, J., Libisch, F. & Datseris, G. (2022). Particlelike valleytronics in graphene. Physical Review B, 106: 125419. doi:10.1103/PhysRevB.106.125419
  • Fang, S.-W., Timmreck, C., Jungclaus, J., Krüger , K. & Schmidt, H. (2022). On the additivity of climate responses to the volcanic and solar forcing in the early 19th century.. Earth System Dynamics, 13, 1535-1555. doi:10.5194/esd-13-1535-2022 [ Fulltext] [ Fulltext] [ Fulltext]
  • Giorgetta, M., Sawyer, W., Lapillonne, X., Adamidis, P., Alexeev, D., Clement, V., Dietlicher, R., Engels, J., Esch, M., Franke, H., Frauen, C., Hannah, W., Hillman, B., Kornblueh, L., Marti, P., Norman, M., Pincus, R., Rast, S., Reinert, D., Schnur, R., Schulzweida, U. & Stevens, B. (2022). The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514). Geoscientific Model Development, 15, 6985-7016. doi:10.5194/gmd-15-6985-2022 [ Fulltext]
  • Günther, M., Kantelhardt, J. & Bartsch, R. (2022). The reconstruction of causal networks in physiology. Frontiers in Network Physiology, 2: 893743. doi:10.3389/fnetp.2022.893743 [ Fulltext]
  • Günther, M., Schmidt, H., Timmreck, C. & Toohey, M. (2022). Climate feedback to stratospheric aerosol forcing: the key role of the pattern effect. Journal of Climate, 35, 4303-4317. doi:10.1175/JCLI-D-22-0306.1
  • Jungclaus, J., Lorenz, S., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crueger, T., de Vrese, P., Gayler, V., Giorgetta, M., Gutjahr, O., Haak, H., Hagemann , S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W., Nabel, J., Notz, D., Pohlmann, H., Putrasahan, D., Raddatz, T., Ramme , L., Redler, R., Reick, C., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von Storch, J., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B., Marotzke, J. & Claussen, M. (2022). The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 14: e2021MS002813. doi:10.1029/2021MS002813 [ Fulltext]
  • Salzmann, M., Ferrachat, S., Tully, C., Munch, S., Watson-Parris, D., Neubauer, D., Siegenthaler-LeDrian, C., Rast, S., Heinold, B., Crueger, T., Brokopf, R., Muelmenstadt, J., Quaas, J., Wan, H., Zhang, K., Lohmann, U., Stier, P. & Tegen, I. (2022). The global atmosphere-aerosol model ICON-A-HAM2.3-Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness. Journal of Advances in Modeling Earth Systems, 14: e2021MS002699. doi:10.1029/2021MS002699 [ Fulltext]
  • Sinnhuber, M., Nesse Tyssøy, H., Asikainen, T., Bender, S., Funke, B., Hendrickx, K., Pettit, J., Reddmann, T., Rozanov, E., Schmidt, H., Smith-Johnsen, C., Sukhodolov, T., Szeląg, M., van de Kamp, M., Verronen, P., Wissing, J. & Yakovchuk, O. (2022). Heppa III intercomparison experiment on electron precipitation impacts: 2. Model-measurement intercomparison of Nitric Oxide (NO) during a geomagnetic storm in April 2010. Journal of Geophysical Research: Space Physics, 127: e2021JA029466. doi:10.1029/2021JA029466 [ Fulltext]
  • Vogel, A., Alessa, G., Scheele, R., Weber, L., Dubovik, O., North, P. & Fiedler, S. (2022). Uncertainty in aerosol optical depth from modern aerosol-climate models, reanalyses, and satellite products. Journal of Geophysical Research: Atmospheres, 127: e2021JD035483. doi:10.1029/2021JD035483 [ Fulltext]
  • Wang, X., Wang, C., Zhao, G., Ding, H. & Yu, M. (2022). Research progress of forest fires spread trend forecasting in Heilongjiang Province. Atmosphere, 13: 2110. doi:10.3390/atmos13122110 [ Fulltext]
  • Azoulay, A., Schmidt, H. & Timmreck, C. (2021). The Arctic polar vortex response to volcanic forcing of different strengths. Journal of Geophysical Research: Atmospheres, 126: e2020JD034450. doi:10.1029/2020JD034450 [ Fulltext] [ Fulltext]
  • Bao , J. & Stevens, B. (2021). The elements of the thermodynamic structure of the tropical atmosphere. Journal of the Meteorological Society of Japan, 99, 1483-1499. doi:10.2151/jmsj.2021-072 [ Fulltext]
  • Bao , J., Stevens, B., Kluft, L. & Jiménez de la Cuesta, D. (2021). Changes in the tropical lapse rate due to entrainment and their impact on climate sensitivity. Geophysical Research Letters, 48: e2021GL094969. doi:10.1029/2021GL094969 [ Fulltext] [ Fulltext]
  • Bao , J. & Windmiller, J. (2021). Impact of microphysics on tropical precipitation extremes in a global storm-resolving model. Geophysical Research Letters, 48: e2021GL094206. doi:10.1029/2021GL094206 [ Fulltext] [ Fulltext]
  • Bourdin, S., Kluft, L. & Stevens, B. (2021). Dependence of climate sensitivity on the given distribution of relative humidity. Geophysical Research Letters, 48: e2021GL092462. doi:10.1029/2021GL092462 [ Fulltext]
  • Datseris, G. & Stevens, B. (2021). Earth’s albedo and its symmetry. AGU Advances, 2: e2021AV000440. doi:10.1029/2021AV000440 [ Fulltext]
  • Karpechko, A., Tyrrell, N. & Rast, S. (2021). Sensitivity of QBO teleconnection to model circulation biases. Quarterly Journal of the Royal Meteorological Society, 147, 2147-2159. doi:10.1002/qj.4014
  • Keil, P., Schmidt, H., Stevens, B. & Bao , J. (2021). Variations of tropical lapse rates in climate models and their implications for upper tropospheric warming. Journal of Climate, 34, 9747-9761. doi:10.1175/JCLI-D-21-0196.1 [ Fulltext]
  • Khabbazan, M., Stankoweit, M., Roshan, E., Schmidt, H. & Held, H. (2021). How can solar geoengineering and mitigation be combined under climate targets?. Earth System Dynamics, 12, 1529-1542. doi:10.5194/esd-12-1529-2021 [ Fulltext]
  • Kluft, L., Dacie, S., Brath, M., Buehler, S. & Stevens, B. (2021). Temperature-dependence of the clear-sky feedback in radiative-convective equilibrium. Geophysical Research Letters, 48: e2021GL094649. doi:10.1029/2021GL094649 [ Fulltext]
  • Knizhnik, K., Leake, J., Linton, M. & Dacie, S. (2021). The rise and emergence of untwisted toroidal flux ropes on the sun. Astrophysical Journal, 907: 19. doi:10.3847/1538-4357/abccc0 [ Fulltext]
  • Kraemer, K., Datseris, G., Kurths, J., Kiss, I., Ocampo-Espindola, J. & Marwan, N. (2021). A unified and automated approach to attractor reconstruction. New Journal of Physics, 23: 033017. doi:10.1088/1367-2630/abe336 [ Fulltext]
  • Kroll , C., Dacie, S., Azoulay, A., Schmidt, H. & Timmreck, C. (2021). The impact of volcanic eruptions of different magnitude on stratospheric water vapour in the tropics. Atmospheric Chemistry and Physics, 21, 6565-6591. doi:10.5194/acp-21-6565-2021 [ Fulltext] [ Fulltext]
  • Li, C., Brasseur, G., Schmidt, H. & Mellado, J. (2021). Error induced by neglecting subgrid chemical segregation due to inefficient turbulent mixing in regional chemical-transport models in urban environments. Atmospheric Chemistry and Physics, 21, 483-503. doi:10.5194/acp-21-483-2021 [ Fulltext] [ Fulltext]
  • Stober, G., Kuchar, A., Pokhotelov, D., Liu, H., Liu, H.-L., Schmidt, H., Jacobi, C., Baumgarten, K., Brown, P., Janches, D., Murphy, D., Kozlovsky, A., Lester, M., Belova, E., Kero, J. & Mitchell, N. (2021). Interhemispheric differences of mesosphere-lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations. Atmospheric Chemistry and Physics, 21, 13855-13902. doi:10.5194/acp-21-13855-2021 [ Fulltext]
  • Thornhill, G., Collins, W., Olivié, D., Skeie, R., Archibald, A., Bauer, S., Checa-Garcia, R., Fiedler, S., Folberth, G., Gjermundsen, A., Horowitz, L., Lamarque, J.-F., Michou, M., Mulcahy, J., Nabat, P., Naik, V., O'Connor, F., Paulot, F., Schulz, M., Scott, C., Séférian, R., Smith, C., Takemura, T., Tilmes, S., Tsigaridis, K. & Weber, J. (2021). Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 21, 1105-1126. doi:10.5194/acp-21-1105-2021 [ Fulltext] [ Fulltext]
  • Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T., Schmidt, H., Toohey, M., Wu, C.-J. & Claussen, M. (2020). Global temperature modes shed light on the Holocene temperature conundrum. Nature Communications, 11: 4726. doi:10.1038/s41467-020-18478-6 [ Fulltext]
  • Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Malavelle, F., Lohmann, U., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D. & Stevens, B. (2020). Bounding aerosol radiative forcing of climate change. Reviews of Geophysics, 58: e2019RG000660. doi:10.1029/2019RG000660 [ Fulltext]
  • Dacie, S. (2020). Using simple models to understand changes in the tropical mean atmosphere under warming. Phd Thesis, Hamburg: Universität Hamburg. doi:10.17617/2.3243249 [ Fulltext]
  • Fiedler, S., Crueger, T., D'Agostino, R., Peters, K., Becker, T., Leutwyler, D., Paccini, L., Burdanowitz, J., Buehler, S., Uribe, A., Dauhut, T., Dommenget, D., Fraedrich, K., Jungandreas, L., Maher, N., Naumann, A., Rugenstein, M., Sakradzija, M., Schmidt, H., Sielmann, F., Stephan, C., Timmreck, C., Zhu , X. & Stevens, B. (2020). Simulated tropical precipitation assessed across three major phases of the Coupled Model Intercomparison Project (CMIP). Monthly Weather Review, 148, 3653-3680. doi:10.1175/MWR-D-19-0404.1 [ Fulltext] [ Fulltext]
  • Fröb, F., Sonntag, S., Pongratz, J., Schmidt, H. & Ilyina, T. (2020). Detectability of artificial ocean alkalinization and stratospheric aerosol injection in MPI-ESM. Earth's Future, 8: e2020EF001634. doi:10.1029/2020EF001634 [ Fulltext]
  • Jiménez de la Cuesta Otero, D. (2020). Historical warming and climate sensitivity. Phd Thesis, Hamburg: Universität Hamburg. doi:10.17617/2.3243040 [ Fulltext]
  • Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D. & Ghosh, R. (2020). Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 10, 667-671. doi:10.1038/s41558-020-0819-8 [ Fulltext]
  • Matthes, K., Biastoch, A., Wahl, S., Harlaß, J., Martin, T., Brücher, T., Drews, A., Ehlert, D., Getzlaff, K., Krüger, F., Rath, W., Scheinert, M., Schwarzkopf, F., Bayr, T., Schmidt, H. & Park, W. (2020). The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): Mean state and variability. Geoscientific Model Development, 13, 2533-2568. doi:10.5194/gmd-13-2533-2020 [ Fulltext]
  • Meraner, K., Rast, S. & Schmidt, H. (2020). How useful is a linear ozone parameterization for global climate modeling?. Journal of Advances in Modeling Earth Systems, 12: e2019MS002003. doi:10.1029/2019MS002003 [ Fulltext] [ Fulltext]
  • Stevens, B., Acquistapace, C., Hansen, A., Heinze, R., Klinger, C., Klocke, D., Schubotz, W., Windmiller, J., Adamidis, P., Arka, I., Barlakas, V., Biercamp, J., Brueck, M., Brune, S., Buehler, S., Burkhardt, U., Cioni, G., Costa-Surós, M., Crewell, S., Crueger, T., Deneke, H., Friederichs, P., Henken, C., Hohenegger, C., Jacob, M., Jakub, F., Kalthoff, N., Köhler, M., van Laar, T., Li, P., Lohnert, U., Macke, A., Madenach, N., Mayer, B., Nam, C., Naumann, A., Peters, K., Poll, S., Quaas, J., Röber, N., Rochetin, N., Rybka, H., Scheck, L., Schemann, V., Schnitt, S., Seifert, A., Senf, F., Shapkalijevski, M., Simmer, C., Singh, S., Sourdeval, O., Spickermann, D., Strandgren, J., Tessiot, O., Vercauteren, N., Vial, J., Voigt, A. & Zängl, G. (2020). The added value of large-eddy and storm-resolving models for simulating clouds and precipitation. Journal of the Meteorological Society of Japan, 98, 395-435. doi:10.2151/jmsj.2020-021 [ Fulltext]
  • Tyrrell, N., Karpechko, A. & Rast, S. (2020). Siberian snow forcing in a dynamically bias-corrected model. Journal of Climate, 33, 10455-10467. doi:10.1175/JCLI-D-19-0966.1 [ Fulltext] [ Fulltext]
  • von Savigny, C., Timmreck, C., Buehler, S., Burrows, J., Giorgetta, M., Hegerl, G., Horvath, A., Hoshyaripour, G., Hoose, C., Quaas, J., Malinina, E., Rozanov, A., Schmidt, H., Thomason, L., Toohey, M. & Vogel, B. (2020). The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption. Meteorologische Zeitschrift, 3-18. doi:10.1127/metz/2019/0999 [ Fulltext]
  • Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G. & Reinert, D. (2019). The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0). Geoscientific Model Development, 12, 3541-3569. doi:10.5194/gmd-12-3541-2019 [ Fulltext] [ Fulltext]
  • Dacie, S., Kluft, L., Schmidt, H., Stevens, B., Buehler, S., Nowack, P., Dietmüller, S., Abraham, L. & Birner, T. (2019). A 1D RCE study of some factors which might affect the tropical tropopause layer and surface climate. Journal of Climate, 32, 6769-6782. doi:10.1175/JCLI-D-18-0778.1 [ Fulltext]
  • Fiedler, S., Stevens, B., Gidden, M., Smith, S., Riahi, K. & van Vuuren, D. (2019). First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect. Geoscientific Model Development, 12, 989-1007. doi:10.5194/gmd-12-989-2019 [ Fulltext] [ Fulltext]
  • Fiedler, S., Kinne, S., Huang, W., Räisänen, P., O'Donnell, D., Bellouin, N., Stier, P., Merikanto, J., van Noije, T., Carslaw, K., Makkonen, R. & Lohmann, U. (2019). Anthropogenic aerosol forcing - insights from multi-estimates from aerosol-climate models with reduced complexity. Atmospheric Chemistry and Physics, 19, 6821-6841. doi:10.5194/acp-19-6821-2019 [ Fulltext]
  • Gruzdev, A., Bezverkhnii, V., Schmidt, H. & Brasseur, G. (2019). Effects of solar activity variations on dynamical processes in the atmosphere: Analysis of empirical data and modeling. IOP Conference Series: Earth and Environmental Science, 231: 012021. doi:10.1088/1755-1315/231/1/012021 [ Fulltext]
  • Jiménez de la Cuesta, D. & Mauritsen, T. (2019). Emergent constraints on Earth's transient and equilibrium response to doubled CO2 by post-1970s global warming. Nature Geoscience, 12, 902-905. doi:10.1038/s41561-019-0463-y [ Fulltext]
  • Kang, S., Hawcroft, M., Xiang, B., Hwang, Y.-T., Kim, H., Cazes, G., Codron, F., Crueger, T., Deser, C., Hodnebrog, Ø., Kim, J., Kosaka, Y., Losada, T., Mechoso, C., Myhre, G., Seland, Ø., Stevens, B., Watanabe, M. & Yu, S. (2019). Extratropical-Tropical INteraction Model Intercomparison Project (ETIN-MIP): Protocol and initial results. Bulletin of the American Meteorological Society, 100, 2589-2606. doi:10.1175/BAMS-D-18-0301.1 [ Fulltext] [ Fulltext]
  • Kluft, L., Dacie, S., Buehler, S., Schmidt, H. & Stevens, B. (2019). Re-examining the first climate models: Climate sensitivity of a modern radiative-convective equilibrium model. Journal of Climate, 32, 8111-8125. doi:10.1175/JCLI-D-18-0774.1 [ Fulltext]
  • Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Popke, D., Gayler, V., Giorgetta, M., Goll, D., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jiménez de la Cuesta Otero, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W., Nabel, J., Nam, C., Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T., Rast, S., Redler, R., Reick, C., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stein, L., Stemmler, I., Stevens, B., von Storch, J., Tian, F., Voigt, A., de Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Roeckner, E. & Winkler, A. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998-1038. doi:10.1029/2018MS001400 [ Fulltext]
  • Misios, S., Gray, L., Knudsen, M., Karoff, C., Schmidt, H. & Haigh, J. (2019). Slowdown of the Walker circulation at solar cycle maximum. Proceedings of the National Academy of Sciences, 116, 7186-7191. doi:10.1073/pnas.1815060116 [ Fulltext]
  • Pfrommer, T., Goeschl, T., Proelss, A., Carrier, M., Lenhard, J., Martin, H., Niemeier, U. & Schmidt, H. (2019). Establishing causation in climate litigation: admissibility and reliability. Climatic Change, 152, 67-84. doi:10.1007/s10584-018-2362-4
  • Stephan, C., Strube, C., Klocke, D., Ein, M., Hoffmann , L., Preusse, P. & Schmidt, H. (2019). Gravity waves in global high-resolution simulations with explicit and parameterized convection. Journal of Geophysical Research - Atmospheres, 124, 4446-4459. doi:10.1029/2018JD030073 [ Fulltext]
  • Stephan, C., Strube, C., Klocke, D., Ein, M., Hoffmann, L., Preusse, P. & Schmidt, H. (2019). Intercomparison of gravity waves in convection-permitting models. Journal of the Atmospheric Sciences, 76, 2739-2759. doi:10.1175/JAS-D-19-0040.1 [ Fulltext]
  • Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B. & Lohmann, U. (2019). The aerosol-climate model ECHAM6.3-HAM2.3 - Part 1: Aerosol evaluation.. Geoscientific Model Development, 12, 1643-1677. doi:10.5194/gmd-2018-235 [ Fulltext]
  • Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M. & Wilson, R. (2019). Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nature Geoscience, 12, 100-107. doi:10.1038/s41561-018-0286-2
  • Crueger, T., Giorgetta, M., Brokopf, R., Esch, M., Fiedler, S., Hohenegger, C., Kornblueh, L., Mauritsen, T., Nam, C., Naumann, A., Peters, K., Rast, S., Roeckner, E., Schmidt, H., Sakradzija, M., Vial, J., Vogel, R. & Stevens, B. (2018). ICON-A: the atmospheric component of the ICON Earth System Model. Part II: Model evaluation. Journal of Advances in Modeling Earth Systems, 10, 1638-1662. doi:10.1029/2017MS001233 [ Fulltext]
  • Federico Conte, J., Chau, J., Laskar, F., Stober, G., Schmidt, H. & Brown, P. (2018). Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere. Annales Geophysicae, 36, 999-1008. doi:10.5194/angeo-36-999-2018 [ Fulltext]
  • Ferrer-Gonzalez, M., Ilyina, T., Sonntag, S. & Schmidt, H. (2018). Enhanced rates of regional warming and ocean acidification after termination of large-scale ocean alkalinization. Geophysical Research Letters, 45, 7120-7129. doi:10.1029/2018GL077847 [ Fulltext]
  • Fiedler, S. (2018). Expedition to the North Atlantic with RV MARIA S. MERIAN. Hamburg: Max-Planck-Institut für Meteorologie. [ Fulltext]
  • Giorgetta, M., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., Hohenegger, C., Kornblueh, L., Köhler, M., Manzini, E., Mauritsen, T., Nam, C., Raddatz, T., Rast, S., Reinert, D., Sakradzija, M., Schmidt, H., Schneck, R., Schnur, R., Silvers, L., Wan, H., Zängl, G. & Stevens, B. (2018). ICON-A: the atmospheric component of the ICON Earth System Model. Part I: Model description. Journal of Advances in Modeling Earth Systems, 10, 1613-1637. doi:10.1029/2017MS001242 [ Fulltext]
  • Gruzdev, A., Schmidt, H. & Brasseur, G. (2018). The effect of the 27-day solar cycle on the wave activity of the atmosphere calculated by a chemistry-climate model. Proceedings of SPIE, 10833: 1083399. doi:10.1117/12.2502979
  • Klimenko, M., Bessarab, F., Sukhodolov, T., Klimenko, V., Koren'kov, Y., Zakharenkova, I., Chirik, N., Vasil'ev, P., Kulyamin, D., Schmidt, H., Funke, B. & Rozanov, E. (2018). Ionospheric effects of the sudden stratospheric warming in 2009: Results of simulation with the first version of the EAGLE model. Russian Journal of Physical Chemistry B, 12, 760-770. doi:10.1134/S1990793118040103
  • Kravitz, B., Rasch, P., Wang, H., Robock, A., Gabriel, C., Boucher, O., Cole, J., Haywood, J., Ji, D., Jones, A., Lenton, A., Moore, J., Muri, H., Niemeier, U., Phipps, S., Schmidt, H., Watanabe, S., Yang, S. & Yoon, J.-H. (2018). The climate effects of increasing ocean albedo: An idealized representation of solar geoengineering. Atmospheric Chemistry and Physics, 18, 13097-13113. doi:10.5194/acp-18-13097-2018 [ Fulltext] [ Fulltext]
  • Lawrence, M., Schäfer, S., Muri, H., Scott, V., Oschlies, A., Vaughan, N., Boucher, O., Schmidt, H., Haywood, J. & Scheffran, J. (2018). Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nature Communications, 9: 3734. doi:10.1038/s41467-018-05938-3 [ Fulltext] [ Fulltext]
  • Maycock, A., Matthes, K., Tegtmeier, S., Schmidt, H., Thiéblemont, R., Hood, L., Akiyoshi, H., Bekki, S., Deushi, M., Jöckel, P., Kirner, O., Kunze, M., Marchand, M., Marsh, D., Michou, M., Plummer, D., Revell, L., Rozanov, E., Stenke, A., Yamashita, Y. & Yoshida, K. (2018). The representation of solar cycle signals in stratospheric ozone - Part 2: Analysis of global models. Atmospheric Chemistry and Physics, 18, 11323-11343. doi:10.5194/acp-18-11323-2018 [ Fulltext] [ Fulltext]
  • Meraner, K. & Schmidt, H. (2018). Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation. Atmospheric Chemistry and Physics, 18, 1079-1089. doi:10.5194/acp-18-1079-2018 [ Fulltext] [ Fulltext]
  • Mikolajewicz, U., Ziemen, F., Cioni, G., Claussen, M., Fraedrich, K., Heidkamp, M., Hohenegger, C., Jiménez de la Cuesta, D., Kapsch, M.-L., Lemburg, A., Mauritsen, T., Meraner, K., Röber, N., Schmidt, H., Six, K., Stemmler, I., Tamarin-Brodsky, T., Winkler, A., Zhu, X. & Stevens, B. (2018). The climate of a retrograde rotating earth. Earth System Dynamics, 9, 1191-1215. doi:10.5194/esd-9-1191-2018 [ Fulltext]
  • Pedatella, N., Chau, J., Schmidt, H., Goncharenko, L., Stolle, C., Hocke, K., Harvey, V., Funke, B. & Siddiqui, T. (2018). How sudden stratospheric warming affects the whole atmosphere. EOS, 99, 35-38. doi:10.1029/2018EO092441 [ Fulltext]
  • Rast, S. (2018). Using and programming ICON— a first introduction. Hamburg: Max-Planck-Institut für Meteorologie. [ Fulltext]
  • Schultz, M., Stadtler, S., Schröder, S., Taraborrelli, D., Franco, B., Krefting, J., Henrot, A., Ferrachat, S., Lohmann, U., Neubauer, D., Siegenthaler-Le Drian, C., Wahl, S., Kokkola, H., Kühn, T., Rast, S., Schmidt, H., Stier, P., Kinnison, D., Tyndall, G., Orlando, J. & Wespes, C. (2018). The chemistry-climate model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development, 11, 1695-1723. doi:10.5194/gmd-11-1695-2018 [ Fulltext] [ Fulltext]
  • Stephan, C., Klingaman, N., Vidale, P., Turner, A., Demory, M.-E. & Guo, L. (2018). Intraseasonal summer rainfall variability over China in the MetUM GA6 and GC2 configurations. Geoscientific Model Development, 11, 3215-3233. doi:10.5194/gmd-11-3215-2018 [ Fulltext]
  • Stjern, C., Muri, H., Ahlm, L., Boucher, O., Cole, J., Ji, D., Jones, A., Haywood, J., Kravitz, B., Lenton, A., Moore, J., Niemeier, U., Phipps, S., Schmidt, H., Watanabe, S. & Kristjánsson, J. (2018). Response to marine cloud brightening in a multi-model ensemble. Atmospheric Chemistry and Physics, 18, 621-634. doi:10.5194/acp-18-621-2018 [ Fulltext] [ Fulltext]
  • Thiéblemont, R., Bekki, S., Marchand, M., Bossay, S., Schmidt, H., Meftah, M. & Hauchecorne, A. (2018). Nighttime mesospheric/lower thermospheric tropical ozone response to the 27-day solar rotational cycle: ENVISAT-GOMOS satellite observations versus HAMMONIA idealized chemistry-climate model simulations. Journal of Geophysical Research: Atmospheres, 123, 8883-8896. doi:10.1029/2017JD027789 [ Fulltext]
  • Zülicke, C., Becker, E., Matthias, V., Peters, D., Schmidt, H., Liu, H.-L., de la Ramos, L. & Mitchell, D. (2018). Coupling of stratospheric warmings with mesospheric coolings in observations and simulations. Journal of Climate, 31, 1107-1133. doi:10.1175/JCLI-D-17-0047.1 [ Fulltext]


Dr. Hauke Schmidt

Group leader
Phone: +49 (0)40 41173-405 dont want

More Content

Department Climate Physics

Our research focuses on understanding how atmospheric water conditions the behavior of the climate system. This leads to efforts to answer specific questions such as how cloud processes set the planetary albedo ...

Read more

Photo: River in rain forest

Tropical wetlands drove methane changes since the last glacial

In a new study in Climate of the Past Dr. Thomas Kleinen and Prof. Victor Brovkin, researchers at the Max Planck Institute for Meteorology, together…

Julia Windmiller with HALO model

Julia Windmiller becomes new group leader at the Max Planck Institute for Meteorology

Dr. Julia Windmiller is the new scientific head of the group “Tropical Cloud Observations”. The group collects and uses observational data of tropical…