Ocean Physics

During the last million years, the Earth’s climate has undergone several transitions between cold glacial periods, when extensive ice sheets covered large parts of North America and Europe, and interglacials, with a climate similar to the preindustrial climate. The waxing and waning of ice sheets leads to changes in the surface topography and determines how much meltwater is released into the ocean. This can induce strong nonlinear climate changes in the ocean and atmosphere. To simulate the climate on glacial to interglacial time scales with climate models, it is therefore important to explicitly consider changes in ice sheets. However, most current climate models, which are designed only to investigate anthropogenic climate change to the end of this century, do not include interactive ice sheet components.

The main focus of our work is the investigation of climate change on longer time scales (e.g., glacial-interglacial transitions and the long-term response to anthropogenic greenhouse gas emissions), the mechanism of abrupt climate fluctuations, as well as their impact on all components of the Earth system. Our main tool to explore key processes is a newly developed coupled climate-ice sheet-solid earth model framework with comprehensive sub-components. It is currently applied to transient simulations of the last deglaciation (21,000 years before present to today). Another research focus is the investigation of the drivers of sudden climate changes during glacials. The medium- to long-term goal of our work is to simulate the lastice age cycle (125,000 years before present until today) and to extend this simulation into the future. We want to understand the underlying mechanisms of climate change and the feedback mechanisms shaping the climate signals.

Like most climate models, our model system accounts for atmospheric, oceanic and land processes, but additionally considers changes of ice sheets, the solid earth, land-sea mask, ocean bathymetry, river directions and icebergs.

Our model system consists of the coarse resolution version of the Max Planck Institute Earth System Model (MPI-ESM), the ice-sheet model mPISM, and the solid-earth model VILMA. The use of state-of-the-art components for the atmosphere, ocean, land, ice sheets and solid earth within our model framework allows us to model each component of the climate system in its full complexity. Hence, we can explicitly investigate feedback mechanisms between these components. It further allows us to test and validate our models for different parameter ranges and compare our transient simulations to observations from natural climate archives.

Read more!

Last Deglaciation

The last deglaciation is the transition from the last glacial maximum (LGM, 21,000 years ago) into the Holocene (about 11,000 years ago to present). During the LGM, large ice sheets covered North America and northern Europe, while at present only the ice sheets over Greenland and Antarctica remain (Fig. 1). This transition is characterized by a gradual global warming with superimposed abrupt changes in climate, most of them associated with substantial changes in the Atlantic meridional overturning circulation (AMOC) and North Atlantic temperatures. 

By simulating the last deglaciation with different model configurations, we investigate the causes of these abrupt changes in climate, the controls of climate variability and the effects on atmospheric regimes or regions such as the Mediterranean Sea.

Fig. 1: Simulation of the last deglaciation with our climate-ice sheet-solid earth model system. Shown are the flow velocity of the ice sheets at their surface, the fraction of vegetation cover in each model grid cell, and the salinity of the sea surface. Credit: F. Ziemen
A north-south cross section of the tropical atmosphere. Credit: C. Jalihal

Do deglacial climate changes affect the tropics?

During the deglacial, the tropical rain belts shift northward; monsoons intensify and expand spatially. The abrupt climate fluctuations in the deglacial also produce corresponding oscillations in monsoon intensity and northward extent. Here, we use a diagnostic tool to analyze these processes and their interrelations.

How does the last deglaciation affect the biogeochemistry of the Mediterranean Sea?

Like the global ocean, the Mediterranean Sea has been subject to major changes during the last deglaciation. Circulation changes due to reduced water mass exchange at Gibraltar during the transition to the warm present, as well as local variations in nutrient input during the early Holocene, are reflected in the organic deposits on the seafloor. Comparison with sediment data allows us to assess the role of various local and global driving forces.

Glacial Climate Variability

During the last glacial period (60,000-20,000 BP),  many abrupt and strong millennial-scale climate events have been well documented from proxy records. The climate signal in this era is dominated by two prominent quasi-periodic events that are closely interlinked: Heinrich events (HEs) and Dansgaard Oeschger (DO) events.

HEs are periodic episodes during which large amounts of icebergs are discharged from the Laurentide ice sheet into the ocean. Evidence of these discharge events can be found in sediment cores of the North Atlantic. The added freshwater from the icebergs affects the ocean circulation and leads to strong cooling of the North Atlantic. A total of six Heinrich events have been identified during the last 100,000 years. 

DO events  are the other dominant climate signal of the glacial period. These ~1,500 year long fluctuations are well documented in ice cores from the northern hemisphere as well as other proxy archives (Fig. 2). In the northern hemisphere, DO events are characterized by a strong rapid warming followed by a long gradual cooling. The signals in the southern hemisphere are much smaller and out of phase with the northern hemispheric oscillations, a fact often referred to as “bipolar see-saw”. The mechanisms driving HE and DO events are still under debate and are one of our group’s research foci.

Sea ice concentration

What causes HE? And how do they affect climate?

In our model, HEs are triggered by quasi-periodic ice-sheet instabilities. During HEs, large amounts of icebergs  are released into the ocean, adding a significant amount of freshwater that alters the ocean circulation in the North Atlantic and thereby the climate evolution of North America and Europe.

How can DO events be explained?

The trigger mechanisms behind DO events remain poorly understood, but are often linked to instabilities in the AMOC. We show that in our simulations self-sustaining oscillations of the AMOC can occur under favorable greenhouse gas concentrations and ice sheet configurations.



The effect of unresolved features in ice sheet models

The Antarctic ice sheet is the largest remaining ice sheet on the planet and has the potential to raise global sea level by ~58 m. In addition, it is the largest source of uncertainty in sea level rise projections. Coastal Antarctica is particularly susceptible to a changing climate, necessitating a better understanding of the dominant physical processes there. In Antarctica, snow accumulates on the ice sheet and is then transported towards the ocean via fast flowing ice streams. When it reaches the ocean, it starts to float at the point referred to as the grounding line to form ice shelves. A change in the position of the grounding line induces a change in ice volume of the Antarctic ice sheet, with a retreat of the grounding line resulting in ice volume loss. The location of the grounding line is primarily controlled by ice shelf buttressing, i.e. forces which slow down the flow of ice. In our work, we investigate the evolution of ice rises, key features controlling ice shelf buttressing. These features come into contact with the ocean floor to form islands surrounded by otherwise floating ice shelves. Because there are over 700 ice rises all around Antarctica and they are commonly not resolved in continental-scale ice sheet simulations, it is important that we improve our understanding of their role in Antarctic ice sheet dynamics.

Ice rise

How ice rises and rumples affect the Antarctic ice sheet?

Ice rises and ice rumples affect the position of the grounding line through ice shelf buttressing. Our simulations show that sea-level variations over a glacial cycle induce a hysteretic behavior of ice rises that has important implications for the evolution of the Antarctic ice sheet.

Read more

Previous research

  • AMOC sensitivity to iceberg forcings (more)
  • The climate of a retrograde Earth (more)
  • Higher storm surges in the German Bight due to global warming (more
  • Characteristics and large-scale drivers of the long-term variability of extreme storm floods in the southern North Sea and future changes in their statistics (more)

Group Members and Publications

Research Scientist
B 231
Research Scientist
B 226
  • Erokhina, O. & Mikolajewicz, U. (2024). A new Eulerian iceberg module for climate studies. Journal of Advances in Modeling Earth Systems, 16: e2023MS003807. doi:10.1029/2023MS003807 [supplementary-material][supplementary-material][publisher-version]
  • Schannwell, C., Mikolajewicz, U., Ziemen, F. & Kapsch, M.-L. (2024). A mechanism for reconciling the synchronisation of Heinrich events and Dansgaard-Oeschger cycles. Nature Communications, 15: 2961. doi:10.1038/s41467-024-47141-7 [publisher-version]
  • Snoll, B., Ivanovic, R., Gregoire, L., Sherriff-Tadano, S., Menviel, L., Obase, T., Abe-Ouchi, A., Bouttes, N., He, C., He, F., Kapsch, M.-L., Mikolajewicz, U., Muglia, J. & Valdes, P. (2024). A multi-model assessment of the early last deglaciation (PMIP4 LDv1): A meltwater perspective. Climate of the Past, 20, 789-815. doi:10.5194/cp-20-789-2024 [publisher-version]
  • Weitzel, N., Andres, H., Baudouin, J.-P., Kapsch, M.-L., Mikolajewicz, U., Jonkers, L., Bothe, O., Ziegler, E., Kleinen, T., Paul, A. & Rehfeld, K. (2024). Towards spatio-temporal comparison of simulated and reconstructed sea surface temperatures for the last deglaciation. Climate of the Past, 20, 865-890. doi:10.5194/cp-20-865-2024 [publisher-version][supplementary-material]
  • Kotova, L., Leissner, J., Winkler, M., Kilian, R., Bichlmair, S., Antretter, F., Moßgraber, J., Reuter, J., Hellmund, T., Matheja, K., Rohde, M. & Mikolajewicz, U. (2023). Making use of climate information for sustainable preservation of cultural heritage: applications to the KERES project. Heritage Science, 11: 18. doi:10.1186/s40494-022-00853-9 [publisher-version][supplementary-material]
  • Schannwell, C., Mikolajewicz, U., Ziemen, F. & Kapsch, M.-L. (2023). Sensitivity of Heinrich-type ice-sheet surge characteristics to boundary forcing perturbations. Climate of the Past, 19, 179-198. doi:10.5194/cp-19-179-2023 [publisher-version]
  • Andernach, M., Turton V, J. & Moelg, T. (2022). Modeling cloud properties over the 79 N Glacier (Nioghalvfjerdsfjorden, NE Greenland) for an intense summer melt period in 2019. Quarterly Journal of the Royal Meteorological Society, 148, 3566-3590. doi:10.1002/qj.4374
  • Extier, T., Six, K., Liu, B., Paulsen, H. & Ilyina, T. (2022). Local oceanic CO2 outgassing triggered by terrestrial carbon fluxes during deglacial flooding. Climate of the Past, 18, 273-292. doi:10.5194/cp-18-273-2022 [publisher-version]
  • Hátún, H., Larsen, K., Eliasen, S. & Mathis, M. (2022). Major nutrient fronts in the Northeastern Atlantic: From the subpolar gyre to adjacent shelves. In Belkin, I. (Eds.), Chemical Oceanography of Frontal Zones (pp.97-141). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Henry, C., Drews, R., Schannwell, C. & Visnjevic, V. (2022). Hysteretic evolution of ice rises and ice rumples with variations in sea level. The Cryosphere, 16, 3889-3905. doi:10.5194/tc-16-3889-2022 [publisher-version][supplementary-material]
  • Jalihal, C. (2022). Climate change and monsoons: a paleo perspective. Physics News, 52, 21-25. [publisher-version]
  • Jungclaus, J., Lorenz, S., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crueger, T., de Vrese, P., Gayler, V., Giorgetta, M., Gutjahr, O., Haak, H., Hagemann , S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W., Nabel, J., Notz, D., Pohlmann, H., Putrasahan, D., Raddatz, T., Ramme, L., Redler, R., Reick, C., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B., Marotzke, J. & Claussen, M. (2022). The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 14: e2021MS002813. doi:10.1029/2021MS002813 [publisher-version]
  • Kapsch, M.-L. & Schannwell, C. (2022). Eisschilde als Klimafaktor. Jahrbuch / Max-Planck-Gesellschaft, 2022. [publisher-version][publisher-version]
  • Kapsch, M.-L., Mikolajewicz, U., Ziemen, F. & Schannwell, C. (2022). Ocean response in transient simulations of the last deglaciation dominated by underlying ice sheet reconstruction and method of melt water distribution. Geophysical Research Letters, 49: e2021GL096767. doi:10.1029/2021GL096767 [supplementary-material][supplementary-material][supplementary-material][publisher-version]
  • Korn, P., Brüggemann, N., Jungclaus, J., Lorenz, S., Gutjahr, O., Haak, H., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Notz, D., Putrasahan, D., Singh, V., von Storch, J.-S., Zhu , X. & Marotzke, J. (2022). ICON-O: The Ocean Component of the ICON Earth System Model - Global simulation characteristics and local telescoping capability. Journal of Advances in Modeling Earth Systems, 14: e2021MS002952. doi:10.1029/2021MS002952 [publisher-version]
  • Liu , F., Mikolajewicz, U. & Six, K. (2022). Drivers of the decadal variability of the North Ionian Gyre upper layer circulation during 1910-2010: a regional modelling study. Climate Dynamics, 58, 2065-2077. doi:10.1007/s00382-021-05714-y [publisher-version]
  • Martin, T., Biastoch, A., Lohmann, G., Mikolajewicz, U. & Wang, X. (2022). On timescales and reversibility of the ocean's response to enhanced Greenland Ice Sheet melting in comprehensive climate models. Geophysical Research Letters, 49: e2021GL097114. doi:10.1029/2021GL097114 [publisher-version]
  • Mayer, B., Mathis, M., Mikolajewicz, U. & Pohlmann, T. (2022). RCP8.5-projected changes in German Bight storm surge characteristics from regionalized ensemble simulations for the end of the twenty-first century. Frontiers in Climate, 4: 992119. doi:10.3389/fclim.2022.992119 [publisher-version]
  • Visnjevic, V., Drews, R., Schannwell, C., Koch, I., Franke, S., Jansen, D. & Eisen, O. (2022). Predicting the steady-state isochronal stratigraphy of ice shelves using observations and modeling. The Cryosphere, 16, 4763-4777. doi:10.5194/tc-16-4763-2022 [publisher-version]
  • Heinrich, H., Schmidt, C., Roettig, C., Ziemen, F., Mikolajewicz, U. & Faust, D. (2021). Massive deposition of Sahelian dust on the Canary Island Lanzarote during North Atlantic Heinrich Events. Quaternary Research, 101, 51-66. doi:10.1017/qua.2020.100
  • Kageyama, M., Harrison, S., Kapsch, M.-L., Lofverstrom, M., Lora, J., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L., Ivanovic, R., Izumi, K., LeGrande, A., Lhardy, F., Lohmann, G., Morozova, P., Ohgaito, R., Paul, A., Peltier, W., Poulsen, C., Quiquet, A., Roche, D., Shi, X., Tierney, J., Valdes, P., Volodin, E. & Zhu, J. (2021). The PMIP4-CMIP6 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3-CMIP5 simulations. Climate of the Past, 17, 1065-1089. doi:10.5194/cp-17-1065-2021 [publisher-version][supplementary-material]
  • Kapsch, M.-L., Mikolajewicz, U., Ziemen, F., Rodehacke, C. & Schannwell, C. (2021). Analysis of the surface mass balance for deglacial climate simulations. The Cryosphere, 15, 1131-1156. doi:10.5194/tc-15-1131-2021 [supplementary-material][publisher-version]
  • Erokhina, O. (2020). A new Eulerian iceberg module for climate studies: Formulation and application to the investigation of the sensitivity of the AMOC to iceberg calving. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 238. doi:10.17617/2.3270743 [publisher-version]
  • Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C., Born, A., Box, J., Delhasse, A., Fujita, K., Gierz, P., Goelzer, H., Hanna, E., Hashimoto, A., Huybrechts, P., Kapsch, M.-L., King, M., Kittel, C., Lang, C., Langen, P., Lenaerts, J., Liston, G., Lohmann, G., Mernild, S., Mikolajewicz, U., Modali, K., Mottram, R., Niwano, M., Noël, B., Ryan, J., Smith, A., Streffing, J., Tedesco, M., van de Berg, W., van den Broeke, M., van de Wal, R., van Kampenhout, L., Wilton, D., Wouters, B., Ziemen, F. & Zolles, T. (2020). GrSMBMIP: Intercomparison of the modelled 1980-2012 surface mass balance over the Greenland Ice sheet. The Cryosphere, 14, 3935-3953. doi:10.5194/tc-14-3935-2020 [publisher-version][supplementary-material]
  • Kleinen, T., Mikolajewicz, U. & Brovkin, V. (2020). Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period. Climate of the Past, 16, 575-595. doi:10.5194/cp-16-575-2020 [supplementary-material][publisher-version]
  • Klockmann, M., Mikolajewicz, U., Kleppin, H. & Marotzke, J. (2020). Coupling of the subpolar gyre and the overturning circulation during abrupt glacial climate transitions. Geophysical Research Letters, 47: e2020GL090361. doi:10.1029/2020GL090361 [publisher-version]
  • Lang, A. (2020). Extreme high sea levels in the German Bight: Past variability and future changes. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 228. doi:10.17617/2.3243031 [publisher-version]
  • Lang, A. & Mikolajewicz, U. (2020). Rising extreme sea levels in the German Bight under enhanced CO2 levels: a regionalized large ensemble approach for the North Sea. Climate Dynamics, 55, 1829-1842. doi:10.1007/s00382-020-05357-5 [publisher-version][supplementary-material]
  • Leroy, S., Arpe, K., Mikolajewicz, U. & Wu, J. (2020). Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum. Climate of the Past, 16, 2039-2054. doi:10.5194/cp-16-2039-2020 [publisher-version][supplementary-material]
  • Mathis, M. & Mikolajewicz, U. (2020). The impact of melt water discharge from the Greenland ice sheet on the Atlantic nutrient supply to the Northwest European Shelf. Ocean Science, 16, 167-193. doi:10.5194/os-16-167-2020 [supplementary-material][supplementary-material][publisher-version]
  • Renoult, M., Annan, J., Hargreaves, J., Sagoo, N., Flynn, C., Kapsch, M.-L., Mikolajewicz, U., Ohgaito, R. & Mauritsen, T. (2020). A Bayesian framework for emergent constraints: case studies of climate sensitivity with PMIP. Climate of the Past, 16, 1715-1735. doi:10.5194/cp-16-1715-2020 [publisher-version]
  • de Souza, M., Mathis, M. & Pohlmann, T. (2019). Driving mechanisms of the variability and long-term trend of the Brazil–Malvinas confluence during the 21st century. Climate Dynamics, 53, 6453-6468. doi:10.1007/s00382-019-04942-7
  • Izquierdo, A. & Mikolajewicz, U. (2019). The role of tides in the spreading of Mediterranean outflow waters along the Southwestern Iberian margin. Ocean Modelling, 133, 27-43. doi:10.1016/j.ocemod.2018.08.003 [publisher-version]
  • Kapsch, M.-L., Skific, N., Graversen, R., Tjernström, M. & Francis, J. (2019). Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns. Climate Dynamics, 52, 2497-2512. doi:10.1007/s00382-018-4279-z [publisher-version]
  • Kotova, L., Jacob, D., Leissner, J., Mathis, M. & Mikolajewicz, U. (2019). Climate information for the preservation of cultural heritage: needs and challenges. In Moropoulou, A., Korres, M., Georgopoulos, A., Spyrakos, C. & Mouzakis, C. (Eds.), Transdisciplinary multispectral modeling and cooperation for the preservation of cultural heritage (pp.353-359). Springer Verlag.
  • Lang, A. & Mikolajewicz, U. (2019). The long-term variability of extreme sea levels in the German Bight. Ocean Science, 15, 651-668. doi:10.5194/os-15-651-2019 [supplementary-material][publisher-version][supplementary-material]
  • Mathis, M., Elizalde, A. & Mikolajewicz, U. (2019). The future regime of Atlantic nutrient supply to the Northwest European Shelf. Journal of Marine Systems, 189, 98-115. doi:10.1016/j.jmarsys.2018.10.002
  • Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Popke, D., Gayler, V., Giorgetta, M., Goll, D., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jiménez de la Cuesta Otero, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W., Nabel, J., Nam, C., Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T., Rast, S., Redler, R., Reick, C., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., de Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Roeckner, E. & Winkler, A. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998-1038. doi:10.1029/2018MS001400 [publisher-version]
  • Nunez-Riboni, I., Taylor, M., Puets, M., Kempf, A. & Mathis, M. (2019). Spatially resolved past and projected changes of the suitable thermal habitat of North Sea cod (Gadus morhua) under climate change. ICES Journal of Marine Science: fsz132. doi:10.1093/icesjms/fsz132 [publisher-version][supplementary-material]
  • Ziemen, F., Kapsch, M.-L., Klockmann, M. & Mikolajewicz, U. (2019). Heinrich events show two-stage climate response in transient glacial simulations. Climate of the Past, 15, 153-168. doi:10.5194/cp-15-153-2019 [publisher-version][supplementary-material]
  • Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge, N., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J., Larour, E., Lipscomb, W., Le clec´h, S., Lee, V., Morlighem, M., Pattyn, F., Payne, A., Rodehacke, C., Rückamp, M., Saito, F., Schlegel, N., Seroussi, H., Shepherd, A., Sun, S., van de Wal, R. & Ziemen, F. (2018). Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. The Cryosphere, 12, 1433-1460. doi:10.5194/tc-12-1433-2018 [publisher-version][supplementary-material]
  • Klockmann, M., Mikolajewicz, U. & Marotzke, J. (2018). Two AMOC states in response to decreasing greenhouse gas concentrations in the coupled climate model MPI-ESM. Journal of Climate, 31, 7969-7984. doi:10.1175/JCLI-D-17-0859.1 [supplementary-material][publisher-version]
  • Llasses, J., Jordà, G., Gomis, D., Adloff, F., Macías, D., Harzallah, A., Arsouze, T., Akthar, N., Li, L., Elizalde, A. & Sannino, G. (2018). Heat and salt redistribution within the Mediterranean Sea in the Med-CORDEX model ensemble. Climate Dynamics, 51, 1119-1143. doi:10.1007/s00382-016-3242-0
  • Mathis, M., Elizalde, A. & Mikolajewicz, U. (2018). Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European shelf. Climate Dynamics, 50, 2637-2659. doi:10.1007/s00382-017-3761-3 [publisher-version]
  • Meccia, V. & Mikolajewicz, U. (2018). Interactive ocean bathymetry and coastlines for simulating the last deglaciation with the Max Planck Institute Earth System Model (MPI-ESM-v1.2). Geoscientific Model Development, 11, 4677-4692. doi:10.5194/gmd-11-4677-2018 [publisher-version]
  • Mikolajewicz, U., Ziemen, F., Cioni, G., Claussen, M., Fraedrich, K., Heidkamp, M., Hohenegger, C., Jiménez de la Cuesta, D., Kapsch, M.-L., Lemburg, A., Mauritsen, T., Meraner, K., Röber, N., Schmidt, H., Six, K., Stemmler, I., Tamarin-Brodsky, T., Winkler, A., Zhu, X. & Stevens, B. (2018). The climate of a retrograde rotating earth. Earth System Dynamics, 9, 1191-1215. doi:10.5194/esd-9-1191-2018 [publisher-version]
  • Piracha, A., Sabia, R., Fernandez-Prieto, D., Klockmann, M. & Castaldo, L. (2018). Satellite based estimation of water-mass formation areas and extents. Proceedings of SPIE, 10784: 10784ON. doi:10.1117/12.2325699
  • Riddick, T., Brovkin, V., Hagemann, S. & Mikolajewicz, U. (2018). Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0. Geoscientific Model Development, 11, 4291-4316. doi:10.5194/gmd-11-4291-2018 [publisher-version][supplementary-material]
  • Hátún, H., Azetsu-Scott, K., Somavilla, R., Rey, F., Johnson, C., Mathis, M., Mikolajewicz, U., Coupel, P., Tremblay, J.-É., Hartman, S., Pacariz, S., Salter, I. & Ólafsson, J. (2017). The subpolar gyre regulates silicate concentrations in the North Atlantic. Scientific Reports, 7: 14576. doi:10.1038/s41598-017-14837-4 [publisher-version][supplementary-material]
  • Kageyama, M., Albani, S., Braconnot, P., Harrison, S., Hopcroft, P., Ivanovic, R., Lambert, F., Marti, O., Peltier, W., Peterschmitt, J.-Y., Roche, D., Tarasov, L., Zhang, X., Brady, E., Haywood, A., LeGrande, A., Lunt, D., Mahowald, N., Mikolajewicz, U., Nisancioglu, K., Otto-Bliesner, B., Renssen, H., Tomas, R., Zhang, Q., Abe-Ouchi, A., Bartlein, P., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X. & Zheng, W. (2017). The PMIP4 contribution to CMIP6 - Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 10, 4035-4055. doi:10.5194/gmd-10-4035-2017 [publisher-version][supplementary-material]
  • Klockmann, M. (2017). The AMOC and its sensitivity to different climate forcings in the range of glacial to modern conditions. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 194. doi:10.17617/2.2472757 [publisher-version]
  • Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. & England, M. (2017). Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study. Paleoceanography, 32, 2-17. doi:10.1002/2016PA003024
  • Orr, J., Najjar, R., Aumont, O., Bopp, L., Bullister, J., Danabasoglu, G., Doney, S., Dunne, J., Dutay, J.-C., Graven, H., Griffies, S., John, J., Joos, F., Levin, I., Lindsay, K., Matear, R., McKinley, G., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R., Slater, R., Tagliabue, A., Tanhua, T. & Yool, A. (2017). Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 10, 2169-2199. doi:10.5194/gmd-10-2169-2017 [publisher-version][supplementary-material]
  • Pätsch, J., Burchard, H., Dieterich, C., Gräwe , U., Gröger, M., Mathis, M., Kapitza, H., Bersch, M., Moll, A., Pohlmann, T., Su , J., Ho-Hagemann, H., Schulz, A., Elizalde, A. & Eden, C. (2017). An evaluation of the North Sea circulation in global and regional models relevant for ecosystem simulations. Ocean Modelling, 116, 70-95. doi:10.1016/j.ocemod.2017.06.005
  • Grant, K., Grimm, R., Mikolajewicz, U., Marino, G., Ziegler, M. & Rohling, E. (2016). The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes. Quaternary Science Reviews, 140, 125-141. doi:10.1016/j.quascirev.2016.03.026
  • Izquierdo, A., Kagan, B., Sein, D. & Mikolajewicz, U. (2016). Modelling in the Strait of Gibraltar: from operational oceanography to scale interactions. Fundamentalnaya i Prikladnaya Gidrofizika, 9, 15-24. [publisher-version]
  • Klockmann, M., Mikolajewicz, U. & Marotzke, J. (2016). The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model. Climate of the Past, 12, 1829-1846. doi:10.5194/cp-12-1829-2016 [publisher-version]
  • Mortin, J., Svensson, G., Graversen, R., Kapsch, M.-L., Stroeve, J. & Boisvert, L. (2016). Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophysical Research Letters, 43, 6636-6642. doi:10.1002/2016GL069330 [publisher-version]
  • Niederdrenk, A., Sein, D. & Mikolajewicz, U. (2016). Interannual variability of the Arctic freshwater cycle in the second half of the twentieth century in a regionally coupled climate model. Climate Dynamics, 47, 3883-3900. doi:10.1007/s00382-016-3047-1 [publisher-version]
  • Niederdrenk, L. & Mikolajewicz, U. (2016). Variability of winter sea ice in Greenland-Iceland-Norwegian sea in a regionally coupled climate model. Polarforschung, 85, 81-84. doi:10.2312/polfor.2016.003 [publisher-version]
  • Rechid, D., Meier, H., Schrum, C., Rummukainen, M., Moseley, C., Bülow, K., Elizalde, A., Su, J. & Pohlmann, T. (2016). Climate model simulation for the North Sea Region. In Quante, M. & Colijn, F. (Eds.), North Sea region climate change assessment (pp.495-504). Cham: Springer International Publ.. [publisher-version]
  • Ruti, P., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A., Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B., Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J., Beranger, K., Beuvier, J., Bouffies-Cloche, S., Brauch, J., Cabos, W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E., Djurdjevic, V., Drobinski, P., Elizalde, A., Gaertner, M., Galan, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O., Jorda, G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G., Lionello, P., Macias, D., Nabat, P., Onol, B., Raikovic, B., Ramage, K., Sevault, F., Sannino, G., Struglia, M., Sanna, A., Torma, C. & Vervatis, V. (2016). MED-CORDEX initiative for Mediterranean climate studies. Bulletin of the American Meteorological Society, 97, 1187-1208. doi:10.1175/BAMS-D-14-00176.1 [publisher-version]
  • Schrum, C., Lowe, J., Meier, H., Grabemann, I., Holt, J., Mathis, M., Pohlmann, T., Skogen, M., Sterl, A. & Wakelin, S. (2016). Projected change - North Sea. In Quante, M. & Colijn, F. (Eds.), North Sea region climate change assessment (pp.175-217). Cham: Springer International Publ.. doi:10.1007/978-3-319-39745-0_6 [publisher-version]
  • Weinert, M., Mathis, M., Kröncke, I., Neumann, H., Pohlmann, T. & Reiss, H. (2016). Modelling climate change effects on benthos: Distributional shifts in the North Sea from 2001 to 2099. Estuarine, Coastal and Shelf Science, 175, 157-168. doi:10.1016/j.ecss.2016.03.024
  • Ziemen, F., Hock, R., Aschwanden, A., Khroulev, C., Kienholz, C., Melkonian, A. & Zhang, J. (2016). Modeling the evolution of the Juneau Icefield between 1971 and 2100 using the Parallel Ice Sheet Model (PISM). Journal of Glaciology, 62, 199-214. doi:10.1017/jog.2016.13 [publisher-version]
  • Grimm, R., Maier-Reimer, E., Mikolajewicz, U., Schmiedl, G., Müller-Navarra, K., Adloff, F., Grant, K., Ziegler, M., Lourens, L. & Emeis, K. (2015). Late glacial initiation of Holocene eastern Mediterranean sapropel formation. Nature Communications, 6: 7099. doi:10.1038/ncomms8099 [publisher-version][publisher-version]
  • Leissner, J., Kilian, R., Kotova, L., Jacob, D., Mikolajewicz, U., Broström, T., Ashley-Smith, J., Schellen, H., Martens, M., van Schijndel, J., Antretter, F., Winkler, M., Bertolin, C., Camuffo, D., Simeunovic, G. & Vyhlídal, T. (2015). Climate for Culture: assessing the impact of climate change on the future indoor climate in historic buildings using simulations. Heritage Science, 3: 38. doi:10.1186/s40494-015-0067-9 [publisher-version]
  • Mathis, M., Elizalde, A., Mikolajewicz, U. & Pohlmann, T. (2015). Variability patterns of the general circulation and sea water temperature in the North Sea. Progress in Oceanography, 135, 91-112. doi:10.1016/j.pocean.2015.04.009
  • Schmiedl, G., Adloff, F., Emeis, K., Grimm, R., Kucera, M., Maier-Reimer, E., Mikolajewicz, U., Möbius, J. & Müller-Navarra, K. (2015). Holocene climate dynamics, biogeochemical cycles and ecosystem variability in the Eastern Mediterranean Sea. In Schulz, M. & Paul, A. (Eds.), Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC) (pp.115-120). Cham: Springer .
  • Sein, D., Mikolajewicz, U., Groeger, M., Fast, I., Cabos , W., Pinto, J., Hagemann, S., Semmler, T., Izquierdo, A. & Jacob, D. (2015). Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM. Part 1: Description and validation. Journal of Advances in Modeling Earth Systems, 7, 268-304. doi:10.1002/2014MS000357 [publisher-version]
  • Stössel, A., Notz, D., Haumann, F., Haak, H., Jungclaus, J. & Mikolajewicz, U. (2015). Controlling high-latitude Southern Ocean convection in climate models. Ocean Modelling, 86, 58-75. doi:10.1016/j.ocemod.2014.11.008
  • Sudarchikova, N., Mikolajewicz, U., Timmreck, C., O'Donnell, D., Schurgers, G., Sein, D. & Zhang, K. (2015). Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica. Climate of the Past, 11, 765-779. doi:10.5194/cp-11-765-2015 [publisher-version][publisher-version]
  • Swingedouw, D., Rodehacke, C., Olsen, S., Menary, M., Gao, Y., Mikolajewicz, U. & Mignot, J. (2015). On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment. Climate Dynamics, 44, 3261-3279. doi:10.1007/s00382-014-2270-x
  • Vizcaíno, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C., Greve, R. & van den Broeke, M. (2015). Coupled simulations of the Greenland ice sheet and climate change up to AD 2300. Geophysical Research Letters, 42, 3927-3935. doi:10.1002/2014GL061142 [publisher-version]
  • Wegner, A., Sudarchikova, N., Fischer, H. & Mikolajewicz, U. (2015). Mineral dust variability in Antarctic ice for different climate conditions. In Schulz, M. & Paul, A. (Eds.), Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC) (pp.83-88). Cham: Springer .
  • Bakker, P., Masson-Delmotte, V., Martrat, B., Charbit, S., Renssen, H., Groeger, M., Krebs-Kanzow, U., Lohmann, G., Lunt, D., Pfeiffer, M., Phipps, S., Prange, M., Ritz, S., Schulz, M., Stenni, B., Stone, E. & Varma, V. (2014). Temperature trends during the present and last interglacial periods - a multi-model-data comparison. Quaternary Science Reviews, 99, 224-243. doi:10.1016/j.quascirev.2014.06.031
  • Bülow, K., Dieterich, C., Elizalde, A., Gröger, M., Heinrich, H., Hüttl-Kabus, S., Klein, B., Mayer , B., Meier, H., Mikolajewicz, U., Narayan, N., Pohlmann, T., Rosenhagen, G., Schimanke, S., Sein, D. & Su, J. (2014). Comparison of three regional coupled ocean atmosphere models for the North Sea under today‘s and future climate conditions. KLIWAS Schriftenreihe, 27/2014.
  • Sabia, R., Klockmann, M., Fernández-Prieto, D. & Donlon, C. (2014). A first estimation of SMOS-based ocean surface T-S diagrams. Journal of Geophysical Research - Oceans, 119, 7357-7371. doi:10.1002/2014JC010120 [publisher-version]
  • Su, J., Sein, D., Mathis, M., Mayer, B., O'Driscoll, K., Chen, X., Mikolajewicz, U. & Pohlmann, T. (2014). Assessment of a zoomed global model for the North Sea by comparison with a conventional nested regional model. Tellus Series A, 66: 23927. doi:10.3402/tellusa.v66.23927 [publisher-version]
  • Ziemen, F., Rodehacke, C. & Mikolajewicz, U. (2014). Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions. Climate of the Past, 10, 1817-1836. doi:10.5194/cp-10-1817-2014 [publisher-version]
  • Bakker, P., Stone, E., Charbit, S., Groeger, M., Krebs-Kanzow, U., Ritz, S., Varma, V., Khon, S., Lunt, D., Mikolajewicz, U., Prange, M., Renssen, H., Schneider, B. & Schulz, M. (2013). Last interglacial temperature evolution – a model inter-comparison. Climate of the Past, 9, 605-619. doi:10.5194/cp-9-605-2013 [publisher-version]
  • Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J. & Stevens, B. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. Journal of Advances in Modeling Earth Systems, 5, 572-597. doi:10.1002/jame.20038 [publisher-version]
  • Groeger, M., Maier-Reimer, E., Mikolajewicz, U., Moll, A. & Sein, D. (2013). NW European shelf under climate warming: implications for open ocean – shelf exchange, primary production, and carbon absorption. Biogeosciences, 10, 3767-3792. doi:10.5194/bg-10-3767-2013 [publisher-version][supplementary-material]
  • Gualdi, S., Somot, S., Li, L., Artale, V., Adani, M., Bellucci, A., Braun, A., Calmanti, S., Carillo, A., Dell'Aquila, A., Déqué, M., Dubois, C., Elizalde, A., Harzallah, A., Jacob, D., L'Hévéder, B., May, W., Oddo, P., Ruti, P., Sanna, A., Sannino, G., Scoccimarro, E., Sevault, F. & Navarra, A. (2013). The CIRCE simulations: Regional climate change projections with realistic representation of the mediterranean sea. Bulletin of the American Meteorological Society, 94, 65-81. doi:10.1175/BAMS-D-11-00136.1 [publisher-version]
  • Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D. & von Storch, J.-S. (2013). Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI Earth System Model. Journal of Advances in Modeling Earth Systems, 5, 422-446. doi:10.1002/jame.20023 [publisher-version]
  • Niederdrenk, A. (2013). The Arctic hydrologic cycle and its variability in a regional coupled climate model. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung = Reports on Earth System Science, 138. [publisher-version]
  • Rodehacke, C., Voigt, A., Ziemen, F. & Abbot, D. (2013). An open ocean region in Neoproterozoic glaciations would have to be narrow to allow equatorial ice sheets. Geophysical Research Letters, 40, 5503-5507. doi:10.1002/2013GL057582 [publisher-version]
  • Swingedouw, D., Rodehacke, C., Behrens, E., Menary, M., Olsen, S., Gao, Y., Mikolajewicz, U., Mignot, J. & Biastoch, A. (2013). Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Climate Dynamics, 41, 695-720. doi:10.1007/s00382-012-1479-9 [publisher-version]
  • Teichmann, C., Eggert, B., Elizalde, A., Haensler, A., Jacob, D., Kumar, P., Moseley, C., Pfeifer, S., Rechid, D., Remedio, A., Ries, H., Petersen, J., Preuschmann, S., Raub, T., Saeed, F., Sieck, K. & Weber, T. (2013). How does a regional climate model modify the projected climate change signal of the driving GCM: A study over different CORDEX regions using REMO. Atmosphere, 4, 214-236. doi:10.3390/atmos4020214 [publisher-version]
  • Ziemen, F. (2013). Glacial climate variability. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 139. doi:10.17617/2.1827332 [publisher-version]
  • Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M., Dell’Aquilla, A., Elizalde, A., Gualdi, S., Jacob, D., L’Hévéder, B., Li, L., Oddo, P., Sannino, G., Scoccimarro, E. & Sevault, F. (2012). Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Climate Dynamics, 39, 1859-1884. doi:10.1007/s00382-011-1261-4
  • Li, L., Casado, A., Congedi, L., Dell'Aquila, A., Dubois, C., Elizalde, A., L' Hévéder, B., Lionello, P., Sevault, F., Somot, S., Ruti, P. & Zampieri, M. (2012). Modeling of the mediterranean climate system. In The climate of the Mediterranean Region (pp.419-448). Amsterdam: Elsevier.
  • Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M., Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D., Pincus, R., Schmidt, H. & Tomassini, L. (2012). Tuning the climate of a global model. Journal of Advances in Modeling Earth Systems, 4: M00A01. doi:10.1029/2012MS000154 [publisher-version]
  • Planton, S., Lionello, P., Vincenzo, A., Aznar, R., Carrillo, A., Colin, J., Congedi, L., Dubois, C., Elizalde, A., Gualdi, S., Hertig, E., Jacobeit, J., Jorda, G., Li, L., Mariotti, A., Piani, C., Ruti, P., Sanchez-Gomez, E., Sannino, G., Sevault, F., Somot, S. & Tsimplis, M. (2012). The climate of the Mediterranean region in future climate projections. In The climate of the Mediterranean Region (pp.449-502). Amsterdam: Elsevier.
  • Scharff, L., Ziemen, F., Hort, M., Gerst, A. & Johnson, J. (2012). A detailed view into the eruption clouds of Santiaguito volcano, Guatemala, using Doppler radar. Journal of Geophysical Research : Solid Earth, 117: B04201. doi:10.1029/2011JB008542 [publisher-version]
  • Sudarchikova, N. (2012). Modeling of mineral dust in the Southern Hemisphere with focus on Antarctica for interglacial and glacial climate conditions. Phd Thesis, Hamburg: Hamburg University. Berichte zur Erdsystemforschung, 120. doi:10.17617/2.1539441 [publisher-version]
  • Adloff, F. (2011). Early Holocene Eastern Mediterranean ocean climate and the stability of its overturning circulation. Phd Thesis, Hamburg: University of Hamburg. Berichte zur Erdsystemforschung, 107. doi:10.17617/2.1404664 [publisher-version]
  • Adloff, F., Mikolajewicz, U., Kucera, M., Grimm, R., Maier-Reimer, E., Schmiedl, G. & Emeis, K. (2011). Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum – a model study. Climate of the Past, 7, 1149-1168. doi:10.5194/cp-7-1149-2011 [publisher-version]
  • Álvarez, O., González, C., Mañanes, R., López, L., Bruno, M., Izquierdo, A., Gómez-Enri, J. & Forero, M. (2011). Analysis of short-period internal waves using wave-induced surface displacement: A three-dimensional model approach in Algeciras Bay and the Strait of Gibraltar. Journal of Geophysical Research - Oceans, 116: C12033 . doi:10.1029/2011JC007393 [publisher-version]
  • Arpe, K., Leroy, S. & Mikolajewicz, U. (2011). A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summer-green tree refugia. Climate of the Past, 7, 91-114. doi:10.5194/cp-7-91-2011 [publisher-version]
  • Bauch, D., Groeger, M., Dmitrenko, I., Höhlemann, J., Kirillov, S., Mackensen, A., Taldenkova, E. & Anderson, N. (2011). Atmospheric controlled freshwater release at the Laptev Sea continental margin. Polar Research, 30: 5858. doi:10.3402/polar.v30i0.5858 [publisher-version]
  • Ferrer, P., Certain, R., Adloff, F., Bouchette, F., Barusseau, J.-P., Meulé, S. & Robin, N. (2011). Hydrodynamics over a microtidal double crescentic barred beach under low energetic conditions (Leucate Beach, France). Journal of Coastal Research, SI 64(Proceedings of the 11th International Coastal Symposium), 2032-2036. [publisher-version]
  • Groeger, M. & Mikolajewicz, U. (2011). Note on the CO2 air-sea gas exchange at high temperatures. Ocean Modelling, 39, 284-290. doi:10.1016/j.ocemod.2011.05.003
  • Leroy, S., Arpe, K. & Mikolajewicz, U. (2011). Vegetation context and climatic limits of the Early Pleistocene hominin dispersal in Europe. Quaternary Science Reviews, 30, 1448-1463. doi:10.1016/j.quascirev.2010.01.017
  • Mikolajewicz, U. (2011). Modeling mediterranean ocean climate of the last glacial maximum. Climate of the Past, 7, 161-180. doi:10.5194/cp-7-161-2011 [publisher-version]
  • Olbert, A., Hartnett, M., Dabrowski, T. & Mikolajewicz, U. (2011). Long-term inter-annual variability of a cyclonic gyre in the western Irish Sea. Continental Shelf Research, 31(13), 1343-1356 . doi:10.1016/j.csr.2011.05.010
  • Arneth, A., Harrison, S., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S. & Vesala, T. (2010). Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 3, 525-532. doi:10.1038/ngeo905 [publisher-version]
  • Bauch, D., Hölemann, J., Willmes, S., Groeger, M., Novikhin, A., Nikulina, A., Kassesns, H. & Timokhov, L. (2010). Changes in the distribution of brine waters on the Laptev Sea shelf in 2007. Journal of Geophysical Research, 115: C11008. doi:10.1029/2010JC006249 [publisher-version]
  • Budich, R., Giorgetta, M., Jungclaus, J., Redler, R. & Reick, C. (2010). The MPI-M Millennium Earth System Model: An Assembling Guide for the COSMOS Configuration. [publisher-version]
  • Jungclaus, J. & Koenigk, T. (2010). Low-frequency variability of the Arctic climate: The role of oceanic and atmospheric heat transport variations. Climate Dynamics, 34, 265-279. doi:10.1007/s00382-009-0569-9 [publisher-version]
  • Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O., Falourd, S., Kageyama, M., Jouzel, J., Landais, A., Minster, B., Krinner, G., Johnsen, S., Rothlisberger, R., Chappellaz, J., Hansen, J., Mikolajewicz, U., Otto-Bliesner, B. & Barnola, J.-M. (2010). EPICA Dome C record of glacial and interglacial intensities. Quaternary Science Reviews, 29, 113-128. doi:10.1016/j.quascirev.2009.09.030
  • Vizcaino, M., Mikolajewicz, U., Jungclaus, J. & Schurgers, G. (2010). Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Climate Dynamics, 34, 301-324. doi:10.1007/s00382-009-0591-y [publisher-version]
  • Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Long, C., Mikolajewicz, U., Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A. & Tokos, K. (2009). Atmospheric lifetime of fossil-fuel carbon dioxide. Annual Review of Earth and Planetary Sciences, 37, 117-134.
  • Cao, L., Eby, M., Ridgwell, A., Caldeira, K., Archer, D., Ishida, A., Joos, F., Matsumoto, K., Mikolajewicz, U., Moucher, A., Orr, J., Plattner, G., Schlitzer, R., Tokos, K., Totterdell, I., Tschumi, T., Yamanaka, Y. & Yool, A. (2009). The role of ocean transport in the uptake of anthropogenic CO2. Biogeosciences, 6, 375-390. doi:10.5194/bg-6-375-2009 [publisher-version]
  • Jaenicke, H., Boettinger, M., Mikolajewicz, U. & Scheuermann, G. (2009). Visual exploration of climate variability changes using wavelet analysis. IEEE Transactions on Visualization and Computer Graphics, 15, 1375-1382. doi:10.1109/TVCG.2009.197 [publisher-version]
  • Koenigk, T., Mikolajewicz, U., Jungclaus, J. & Kroll, A. (2009). Sea ice in the Barents Sea: seasonal to interannual variability and climate feedbacks in a global coupled model. Climate Dynamics, 32, 1119-1138. doi:10.1007/s00382-008-0450-2 [publisher-version]
  • Koenigk, T. & Mikolajewicz, U. (2009). Seasonal to interannual climate predictability in mid and high northern latitudes in a global coupled model. Climate Dynamics, 32(6), 783-798. doi:10.1007/s00382-008-0419-1 [publisher-version]
  • Huhn, O., Hellmer, H., Rhein, M., Roether, W., Rodehacke, C., Schodlok, M. & Schröder, M. (2008). Evidence of deep and bottom water formation in the western Weddell Sea. Deep-Sea Research Part II-Topical Studies in Oceanography, 55, 1098-1116. doi:10.1016/j.dsr2.2007.12.015
  • Koenigk, T., Mikolajewicz, U., Haak, H. & Jungclaus, J. (2008). Modelling the sea ice export through Fram Strait. In Dickson, R., Meincke, J. & Rhines, P. (Eds.), Arctic-subarctic ocean fluxes (pp.171-191). Dordrecht: Springer.
  • Schurgers, G., Mikolajewicz, U., Groeger, M., Maier-Reimer, E., Vizcaino, M. & Winguth, A. (2008). Long-term effects of biophysical and biogeochemical interactions between terrestrial biosphere and climate under anthropogenic climate change. Global and Planterary Change, 64(1-2), 26-37. doi:10.1016/j.gloplacha.2008.01.009 [publisher-version]
  • Vizcaino, M., Mikolajewicz, U., Groeger, M., Maier-Reimer, E., Schurgers, G. & Winguth, A. (2008). Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with complex earth system model. Climate Dynamics, 31, 665-690. doi:10.1007/s00382-008¬0369-7 [publisher-version]
  • Wohlfahrt, J., Harrison, S., Braconnot, P., Hewitt, C., Kitoh, A., Mikolajewicz, J., Otto-Bliesner, B. & Weber, S. (2008). Evaluation of coupled ocean-atmosphere simulations of the mid-Holocene using palaeovegetation data from the northern hemisphere extratropics. Climate Dynamics, 31(6), 871-890. doi:10.1007/s00382-008-0415-5 [publisher-version]
  • Groeger, M., Maier-Reimer, E., Mikolajewicz, U., Schurgers, G., Vizcaino, M. & Winguth, A. (2007). Vegetation-climate feedbacks in transient simulations over the last interglacial (128 000 - 113 000 yr BP). In Sirocko, F., Claussen, M., Goni, M. & Litt, T. (Eds.), The climate of past interglacials (pp.563-572). Amsterdam: Elsevier. [publisher-version]
  • Gröger, M., Maier-Reimer, E., Mikolajewicz, U., Schurgers, G., Vizcaino, M. & Winguth, A. (2007). Changes in the hydrological cycle, ocean circulation, and carbon/nutrient cycling during the last interglacial. Paleoceanography, 22: PA4205. [publisher-version]
  • Jungclaus, J., Baehr, J., Haak, H., Jacob, D., Königk, T. & Marotzke, J. (2007). Die Stabilität der atlantischen Umwälzbewegung. Jahrbuch / Max-Planck-Gesellschaft, 2006. [publisher-version]
  • Koenigk, T., Mikolajewicz, U., Haak, H. & Jungclaus, J. (2007). Arctic freshwater export and its impact on climate in the 20th and 21st. century. Journal of Geophysical Research - Biogeosciences, 112: G04S41. doi:10.1029/2006JG000274 [publisher-version]
  • Mikolajewicz, U., Gröger, E., Maier-Reimer, E., Schurgers, G., Vizcaino, M. & Winguth, A. (2007). Long-term effects of anthropogenic CO₂ emissions simulated with a complex earth system model. Climate Dynamics, 28(6), 599-631. doi:10.1007/s00382-006-0204-y
  • Mikolajewicz, U., Vizcaino, M., Jungclaus, J. & Schurgers, G. (2007). Effect of ice sheet interactions in anthropogenic climate change simulations. Geophysical Research Letters, 34: L18706. doi:10.1029/2007GL031173 [publisher-version]
  • Rodehacke, C., Hellmer, H., Beckmann, A. & Roether, W. (2007). Formation and spreading of Antarctic deep and bottom waters inferred from a chlorofluorocarbon (CFC) simulation. Journal of Geophysical Research, 112: C09001. doi:10.1029/2006JC003884
  • Schurgers, G., Mikolajewicz, U., Gröger, M., Maier-Reimer, E., Vizcaino, M. & Winguth, A. (2007). The effect of land surface changes on Eemian climate. Climate Dynamics, 29, 357-373. doi:10.1007/s00382-007-0237-x
  • Jungclaus, J., Botzet, M., Haak, H., Keenlyside, N., Luo, J., Latif, M., Marotzke, J., Mikolajewicz, U. & Roeckner, E. (2006). Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. Journal of Climate, 19, 3952-3972. doi:10.1175/JCLI3827.1 [publisher-version]
  • Koenigk, T., Mikolajewicz, U., Haak, H. & Jungclaus, J. (2006). Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate model. Climate Dynamics, 26, 17-34. doi:10.1007/s00382-005-0060-1
  • Marotzke, J., Mikolajewicz, U. & Koenigk, T. (2006). Ozeanzirkulation und arktisches Meereis unter dem Einfluss anthropogener Klimaänderungen. In Lozán, J., Graßl, H., Hubberten, H.-W., Hupfer, P., Karbe, L. & Piepenburg, a. (Eds.), Warnsignale aus den Polarregionen (pp.237-242). Hamburg: Wissenschaftliche Auswertungen. [publisher-version]
  • Schurgers, G., Mikolajewicz, U., Groeger, M., Maier-Reimer, E., Vizcaino, M. & Winguth, A. (2006). Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene. Climate of the Past, 2, 205-220. doi:10.5194/cp-2-205-2006 [publisher-version]
  • Schurgers, G. (2006). Long-term interactions between vegetation and climate: Model simulations for past and future. Phd Thesis, Hamburg: University of Hamburg. Berichte zur Erdsystemforschung, 27. doi:10.17617/2.994539 [publisher-version]
  • Schurgers, G., Dorsch, P., Bakken, L., Leffelaar, P. & Haugen, L. (2006). Modelling soil anaerobiosis from water retention characteristics and soil respiration. Soil Biology and Biochemistry, 38(9), 2637-2644.
  • Vizcaino, M. (2006). Long-term interactions between ice sheets and climate under anthropogenic greenhouse forcing: Simulations with two complex Earth System Models. Phd Thesis, Hamburg: University of Hamburg. Berichte zur Erdsystemforschung, 30. [publisher-version]
  • Aldrian, E., Sein, D., Jacob, D., Gates, L. & Podzun, R. (2005). Modelling Indonesian rainfall with a coupled regional model. Climate Dynamics, 25(1), 1-17. doi:10.1007/s00382-004-0483-0
  • Androsov, A., Rubino, A., Romeiser, R. & Sein, D. (2005). Open-ocean convection in the Greenland Sea: preconditioning through a mesoscale chimney and detectability in SAR imagery studied with a hierarchy of nested numerical models. Meteorologische Zeitschrift, 14(6), 693-702. [publisher-version]
  • Jungclaus, J., Haak, H., Latif, M. & Mikolajewicz, U. (2005). Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. Journal of Climate, 18(19), 4013-4031. [publisher-version]
  • Königk, T. (2005). Sea ice export through Fram Strait: Variability and interactions with climate. Phd Thesis, Hamburg: University of Hamburg. Berichte zur Erdsystemforschung, 12. doi:10.17617/2.994869 [publisher-version]
  • Mikolajewicz, U., Sein, D., Jacob, D., Koenigk, T., Podzun, R. & Semmler, T. (2005). Simulating Arctic sea ice variability with a coupled regional atmosphere-ocean-sea ice model. Meteorologische Zeitschrift, 14(6), 793-800. doi:10.1127/0941-2948/2005/0083 [publisher-version]
  • Winguth, A., Mikolajewicz, U., Groger, M., Maier-Reimer, E., Schurgers, G. & Vizcaino, M. (2005). Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model. Geophysical Research Letters, 32(23): L23714. doi:10.1029/2005GL023681 [publisher-version]
  • Zhao, Y., Braconnot, P., Marti, O., Harrison, S., Hewitt, C., Kitoh, A., Liu, Z., Mikolajewicz, U., Otto-Bliesner, B. & Weber, S. (2005). A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Climate Dynamics, 25(7-8), 777-800. doi:10.1007/s00382-005-0075-7
  • Brandt, P., Rubino, A., Sein, D., Baschek, B., Izquierdo, A. & Backhaus, J. (2004). Sea level variations in the western Mediterranean studied by a numerical tidal model of the Strait of Gibraltar. Journal of Physical Oceanography, 34(2), 433-443. doi:10.1175/1520-0485(2004)034<0433:SLVITW>2.0.CO;2 [publisher-version]
  • Latif, M., Roeckner, E., Botzet, M., Esch, M., Haak, H., Hagemann, S., Jungclaus, J., Legutke, S., Marsland, S., Mikolajewicz, U. & Mitchell, J. (2004). Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. Journal of Climate, 17, 1605-1614. doi:10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2 [publisher-version]
  • Mikolajewicz, U., Groeger, M., Marotzke, J., Schurgers , G. & Vizcaíno , M. (2004). Die Simulation von Eiszeitzyklen mit einem komplexen Erdsystemmodell. Jahrbuch / Max-Planck-Gesellschaft, 2004, 439-443. [publisher-version]
  • Sarmiento, J., Slater, R., Barber, R., Bopp, L., Doney, S., Hirst, A., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. & Stouffer, R. (2004). Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles, 18: GB3003. doi:10.1029/2003GB002134 [publisher-version]
  • Schmidt, G., Bitz, C., Mikolajewicz, U. & Tremblay, L. (2004). Ice-ocean boundary conditions for coupled models. Ocean Modelling, 7, 59-74. doi:10.1016/S1463-5003(03)00030-1
  • Gröger, M., Henrich, R. & Bickert, T. (2003). Variability of silt grain size and planktonic foraminiferal preservation in Plio/Pleistocene sediments from the western equatorial Atlantic and Caribbean. Marine Geology, 201(4), 307-320. doi:10.1016/S0025-3227(03)00264-0
  • Gröger, M., Henrich, R. & Bickert, T. (2003). Glacial-interglacial variability in lower North Atlantic deep water: inference from silt grain-size analysis and carbonate preservation in the western equatorial Atlantic. Marine Geology, 201(4), 321-332. doi:10.1016/S0025-3227(03)00263-9
  • Haak, H., Jungclaus, J., Mikolajewicz, U. & Latif, M. (2003). Formation and propagation of great salinity anomalies. Geophysical Research Letters, 30(9), 26-1-26-4: 1473. doi:10.1029/2003GL017065 [publisher-version]
  • Marsland, S., Haak, H., Jungclaus, J., Latif, M. & Röske, F. (2003). The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5(2), 91-127. doi:10.1016/S1463-5003(02)00015-X
  • Mikolajewicz, U., Scholze, M. & Voss, R. (2003). Simulating near-equilibrium climate and vegetation for 6000 cal. years BP. Holocene, 13(3), 319-326.
  • Johannessen, O., Sagen, H., Hamre, T., Hobaek, H., Hasselmann, K., Maier-Reimer, E., Mikolajewicz, U., Wadhams, P., Kaletzky, A., Bobylev, L., Evert, E., Troyan, V., Naugolnykh, K. & Esipov, I. (2002). Acoustic monitoring of ocean climate in the Arctic (AMOC). In Flemming, N. & Vallerga et al, S. (Eds.), Operational Oceanography - Implementation at the European and regional Scales (pp.371-378). Amsterdam: Elsevier Science BV. doi:10.1016/S0422-9894(02)80043-5
  • Klatt, O., Roether, W., Hoppema, M., Bulsiewicz, K., Fleischmann, U., Rodehacke, C., Fahrbach, E., Weiss, R. & Bullister, J. (2002). Repeated CFC sections at the Greenwich Meridian in the Weddell Sea. Journal of Geophysical Research-Oceans, 107: 3030. doi:10.1029/2000JC000731 [publisher-version]
  • Winguth, A., Heinze, C., Kutzbach, J., Maier-Reimer, E., Mikolajewicz, U., Rowley, D., Rees, A. & Ziegler, A. (2002). Simulated warm polar currents during the middle Permian. Paleoceanography, 17: 1057. doi:10.1029/2001PA000646 [publisher-version]
  • Voss, R. & Mikolajewicz, U. (2001). The Climate of 6000 years BP in near equilibrium simulations with a coupled AOGCM. Geophysical Research Letters, 28, 2213-2216. doi:10.1029/2000GL012498 [publisher-version]
  • Cubasch, U., Voss, R. & Mikolajewicz, U. (2000). Precipitation: A Parameter changing climate and modified by climate change. Climatic Change, 46, 257-276. doi:10.1023/A:1005600525681 [publisher-version]
  • Jungclaus, J. & Mellor, G. (2000). A three-dimensional model study of the Mediterranean outflow. Journal of Marine Systems, 24, 41-66. doi:10.1016/S0924-7963(99)00078-0
  • Latif, M., Roeckner, E., Mikolajewicz, U. & Voss, R. (2000). Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. Journal of Climate, 13, 1809-1813. doi: 10.1175/1520-0442(2000)013<1809:L>2.0.CO;2 [publisher-version]
  • Mikolajewicz, U. & Voss, R. (2000). The role of individual air sea-sea flux components in CO2-induced changes of the ocean's circulation and climate. Climate Dynamics, 16, 627-642. doi:10.1007/s003820000066
Fanny Adloff DKRZ, Hamburg, DE
Luisa Cristini AWI, Bremerhaven, DE
Alberto Elizalde Arellano HEREON, Geesthacht, DE
Olga Erokhina IUP, Heidelberg, DE
Ksenia Gorges GERICS, Hamburg, DE
Rosina Grimm Marktoberdorf, DE
Matthias Gröger IOW, Warnemünde, DE
Alfredo Izquierdo Universidad de Cadiz, ES
Johann Jungclaus MPI-Met, Hamburg,DE
Marlene Klockmann HEREON, Geesthacht, DE
Torben Koenigk SMHI, Norrköping, SE
Andreas Lang München, DE
Feifei Liu HEREON, Geesthacht, DE
Moritz Mathis HEREON, Geesthacht, DE
Virna Meccia ISAC, Bologna, IT
Anne Mouchet University of Liège, Liège, BEL
Laura Niederdrenk Hamburg, DE
Christian Rodehacke AWI, Bremerhaven, DE
Guy Schurgers Københavns Universitet, DK
Dmitry Sein AWI, Bremerhaven, DE
Natalia Sudarchikova Hamburg, DE
Miren Vizcaino TU Delft, NL
Florian Ziemen DKRZ, Hamburg, DE


Uwe Mikolajewicz

Group Leader
Tel: +49 (0)40 41173-243
uwe.mikolajewicz@we dont want spammpimet.mpg.de

More Content

[Translate to English:]

Large-scale research project PalMod: What have we learned?

The PalMod project (short for paleo-modeling), funded by the German Federal Ministry of Education and Research (BMBF), investigates the climate system…

[Translate to English:]

The effect of climate perturbations on the timing of Heinrich events

Throughout the last glacial period (ca. 65,000-15,000 years before present) periodic ice discharge events from the North American ice sheet, known as…

[Translate to English:]

What controls the millennial-scale climate variability in simulations of the last deglaciation?

The transition between the last glacial maximum (LGM, about 21,000 years before present) and present, which is referred to as the last deglaciation,…