Climate Energetics

Climate is a multi-scale system. It consists of large-scale processes of thousands of kilometers such as the Meridional Overturning Circulation in the ocean and the Hadley Cell in the atmosphere, and the omnipresent smaller-scale processes of a few 10 kilometers to 100 kilometers such as meso-scale and sub-mesoscale oceanic eddies, deep convective storms in the tropical troposphere, and internal gravity waves in the ocean and the atmosphere. The research group Climate Energetics investigates climate processes on these different scales and their interactions across the scales, with focus on the small-scale eddies and waves and their roles for the large scales.

Why are scale interactions important, and how are they related to the energetics? The climate system is forced at large scales, where energy, such as that from the sun, is inputted into large-scale motions, but damped at small scales, where dissipation via turbulent motions occurs. Kinetic energy is thereby removed from the system. Scale interaction is the key mechanism that transfers energy from the forcing scales to the dissipation scales. Because of these transfers, scale interaction is not only crucial for establishing the mean circulation. It plays also an important role in shaping the variability and the sensitivity of the circulation to forcing changes.  

We quantify scale interactions using global general circulation models at highest possible resolutions. We use the “highest possible resolutions” to be able to resolve small-scale processes based on first principles, and “global” (as opposed to regional) models to be able to explicitly simulate the interactions across all resolved scales. Our key questions are how and why a climate system with comprehensive scale interactions behaves differently from a strongly simplified climate system (heavily loaded with parameterizations). Our ultimate goal is to understand how scale interactions impact climate, climate variability and climate change.

Example I – Oceanic Mesoscale Eddies:

Oceanic mesoscale eddies can affect the efficiency of ocean heat uptake that is expected to affect the global mean surface temperature (GMST) response to a CO2 increase. However, current generation climate models generally rely on eddy parametrizations as they do not resolve ocean mesoscale eddies. The effect of parameterized eddies can deviate from that of resolved eddies, leading to differences in the GMST response projected by a climate model with eddy-resolving vs. non-eddy-resolving ocean. We study this effect using a coupled atmosphere-ocean GCM with an  ocean component having a horizontal resolution of about 10km (Putrasahan et al. 2021). We found that in a 4 °C warmer world, resolving eddies leads to a cooler response of GMST. This cooling is energetically consistent with a larger rate of ocean heat uptake that is accompanied by a stronger response of all heat processes (diffusive, mean and eddy heat advection) when resolving mesoscale eddies.

Example II – Deep Mesoscale Eddies:

Little is known about deep-ocean mesoscale eddies, as they are difficult to observe and cannot be directly inferred from satellite data. We show that in the Atlantic at the depths of the deep western boundary current (DWBC), the eddy fluxes below the core of DWBC cannot be represented by the classical Gent-McWilliams parameterization (Lüschow et al., 2019).  We show also that resolving deep mesoscale eddies leads to a slowdown of the DWBC in response to an increase in wind stress at the sea surface (Lüschow et al., 2021). This eddy effect acts to weaken the seesaw between the upper overturning cell – known as the AMOC and the lower overturning cell – known as the AABW cell, which has been found in non-eddy resolving models.

Example III – M2 Internal Tide:

Ocean tides, traditionally studied using barotropic tidal models, have only been recently integrated into high-resolution ocean general circulation models. We show that the 0.1° MPIOM model simulates the key elements of the process of internal-tide generation (Li and von Storch 2020): As the barotropic tides flow over the Hawaii ridge, the internal tide pressure drops from the windward to the leeward side of the ridge, thereby generating internal tides via the bottom form drag at the two sides of the ridge.

We show not only the well-known feature that the intense internal tide generation occurs directly over the proximities of the summits of high underwater ridges and rises, but also a less-known feature that the maximum internal-tide generation is located at a much deeper depth in the Atlantic than in the Pacific. The difference in the depths of internal tide generation suggests different structures of internal-tide-induced mixing, which can impact differently on the circulation in the two ocean basins.

Putrasahan, D. A.,  Gutjahr, O., Haak, H., Jungclaus, J., Lohmann, K., Roberts, M. J., von Storch, J.-S., 2021: Effect of resolving ocean eddies on the response of the climate system to abrupt 4xCO2 forcing.  GRL. doi:10.1029/2020GL092049

Lüschow, V.,  von Storch, J.-S. and Marotzke, J., 2019: Diagnosing the Influence of Mesoscale Eddy Fluxes on the Deep Western Boundary Current in the 1/10° STORM / NCEP Simulation. J. Phys. Oceanogr. 49. 751-764.

Lüschow, V.,  Marotzke, J.,  and  J.-S. von Storch 2021: Overturning response to a doubling of the surface wind stress  in an eddying and a non-eddying ocean.  JPO.  51, 1007-1020. doi.org/10.1175/JPO-D-20-0176.1

Li, Z. and von Storch, J.-S., 2020: M2 internal-tide generation in STORMTIDE2. Journal of GeophysicalResearch: Oceans, 125, e2019JC015453. doi.org/10.1029/2019JC015453

Group members and publications

  • Lüschow, V. & von Storch, J.-S. (2024). Sensitivity of internal-tide generation to stratification and its implication for deep overturning circulations. Journal of Physical Oceanography, 54, 319-330. doi:10.1175/JPO-D-23-0058.1 [supplementary-material][publisher-version]
  • Ssebandeke, J., von Storch, J. & Brüggemann, N. (2024). Sensitivity of the global Lorenz energy cycle. Ocean Dynamics, available online.. doi:10.1007/s10236-023-01568-6 [publisher-version][supplementary-material]
  • Stevens, B., Adami, S., Ali, T., Anzt, H., Aslan, Z., Attinger, S., Bäck, J., Baehr, J., Bauer, P., Bernier, N., Bishop, B., Bockelmann, H., Bony, S., Bouchet, V., Brasseur, G., Bresch, D., Breyer, S., Brunet, G., Buttigieg, P., Cao, J., Castet, C., Cheng, Y., Dey Choudhury, A., Coen, D., Crewell, S., Dabholkar, A., Dai, Q., Doblas-Reyes, F., Durran, D., El Gaidi, A., Ewen, C., Exarchou, E., Eyring, V., Falkinhoff, F., Farrell, D., Forster, P., Frassoni, A., Frauen, C., Fuhrer, O., Gani, S., Gerber, E., Goldfarb, D., Grieger, J., Gruber, N., Hazeleger, W., Herken, R., Hewitt, C., Hoefler, T., Hsu, H.-H., Jacob, D., Jahn, A., Jakob, C., Jung, T., Kadow, C., Kang, I.-S., Kang, S., Kashinath, K., Kleinen-von Königslöw, K., Klocke, D., Kloenne, U., Klöwer, M., Kodama, C., Kollet, S., Kölling, T., Kontkanen, J., Kopp, S., Koran, M., Kulmala, M., Lappalainen, H., Latifi, F., Lawrence, B., Lee, J., Lejeun, Q., Lessig, C., Li, C., Lippert, T., Luterbacher, J., Manninen, P., Marotzke, J., Matsouoka, S., Merchant, C., Messmer, P., Michel, G., Michielsen, K., Miyakawa, T., Müller, J., Munir, R., Narayanasetti, S., Ndiaye, O., Nobre, C., Oberg, A., Oki, R., Özkan-Haller, T., Palmer, T., Posey, S., Prein, A., Primus, O., Pritchard, M., Pullen, J., Putrasahan, D., Quaas, J., Raghavan, K., Ramaswamy, V., Rapp, M., Rauser, F., Reichstein, M., Revi, A., Saluja, S., Satoh, M., Schemann, V., Schemm, S., Schnadt Poberaj, C., Schulthess, T., Senior, C., Shukla, J., Singh, M., Slingo, J., Sobel, A., Solman, S., Spitzer, J., Stammer, D., Stier, P., Stocker, T., Strock, S., Su, H., Taalas, P., Taylor, J., Tegtmeier, S., Teutsch, G., Tompkins, A., Ulbrich, U., Vidale, P.-L., Wu, C.-M., Xu, H., Zaki, N., Zanna, L., Zhou, T. & Ziemen, F. (in press). Earth Virtualization Engines (EVE). Earth System Science Data. doi:10.5194/essd-2023-376
  • Ghosh, R., Putrasahan, D., Manzini, E., Lohmann, K., Keil, P., Hand, R., Bader, J., Matei, D. & Jungclaus, J. (2023). Two distinct phases of North Atlantic eastern subpolar gyre and warming hole evolution under global warming. Journal of Climate, 36, 1881-1894. doi:10.1175/JCLI-D-22-0222.1 [publisher-version][supplementary-material]
  • Hariadi, M., van der Schrier, G., Steeneveld, G.-J., Ratri, D., Sopaheluwakan, A., Tank, A., Aldrian, E., Gunawan, D., Moine, M.-P., Bellucci, A., Senan, R., Tourigny, E., Putrasahan, D. & Linarka, U. (2023). Evaluation of extreme precipitation over Southeast Asia in the Coupled Model Intercomparison Project Phase 5 regional climate model results and HighResMIP global climate models. International Journal of Climatology. doi:10.1002/joc.7938 [publisher-version]
  • Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S., Behravesh, M., Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R., Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M., Gutjahr, O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger, T., Naumann, A., Paccini, L., Peinado, A., Praturi, D., Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H., Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C., von Storch, J., Vogel, R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J. & Stevens, B. (2023). ICON-Sapphire: simulating the components of the Earth System and their interactions at kilometer and subkilometer scales. Geoscientific Model Development, 16, 779-811. doi:10.5194/gmd-16-779-2023 [publisher-version]
  • Keil, P., Schmidt, H., Stevens, B., Byrne, M., Segura, H. & Putrasahan, D. (2023). Tropical tropospheric warming pattern explained by shifts in convective heating in the Matsuno-Gill Model. Quarterly Journal of the Royal Meteorological Society, 149, 2678-2695. doi:10.1002/qj.4526 [publisher-version]
  • Polkova, I., Swingedouw, D., Hermanson, L., Köhl, A., Stammer, D., Smith, D., Kröger, J., Bethke, I., Yang, X., Zhang, L., Nicolì, D., Athanasiadis, P., Karami, P., Pankatz, K., Pohlmann, H., Wu, B., Bilbao, R., Ortega, P., Yang, S., Sospedra-Alfonso, R., Merryfield, W., Kataoka, T., Tatebe, H., Imada, Y., Ishii, M. & Matear, R. (2023). Initialization shock in the ocean circulation reduces skill in decadal predictions of the North Atlantic subpolar gyre. Frontiers in Climate, 5. doi:10.3389/fclim.2023.1273770 [publisher-version]
  • Shevchenko, R., Hohenegger, C. & Schmitt, M. (2023). Impact of diurnal warm layers on atmospheric convection.. Journal of Geophysical Research: Atmospheres, 128: e2022JD038473. doi:10.1029/2022JD038473 [supplementary-material][supplementary-material][publisher-version]
  • von Storch, J.-S., Hertwig, E., Lüschow, V., Brüggemann, N., Haak, H., Korn, P. & Singh, V. (2023). Open-ocean tides simulated by ICON-O. Geoscientific Model Development, 16, 5179-5196. doi:10.5194/gmd-16-5179-2023 [supplementary-material][publisher-version][any-fulltext]
  • von Storch, J.-S. & Lüschow, V. (2023). Wind power input to ocean near-inertial waves diagnosed from a 5-km coupled atmosphere-ocean general circulation model. Journal of Geophysical Research: Oceans, 128: e2022JC019111. doi:10.1029/2022JC019111 [supplementary-material][supplementary-material][publisher-version]
  • Yang, C., Cheng, X., von Storch, J.-S., Qin, J. & Qiu, B. (2023). Interbasin differences in interannual variations of the Atlantic circumpolar current transport. Journal of Geophysical Research: Oceans, 128: e2023JC020327. doi:10.1029/2023JC020327
  • Farneti, R., Stiz, A. & Ssebandeke, J. (2022). Improvements and persistent biases in the southeast tropical Atlantic in CMIP models. npj Climate and Atmospheric Science, 5: 42. doi:10.1038/s41612-022-00264-4 [publisher-version][supplementary-material]
  • Hodson, D., Bretonniere, P., Cassou, C., Davini, P., Klingaman, N., Lohmann, K., Lopez-Parages, J., Martin-Rey, M., Moine, M., Monerie, P., Putrasahan, D., Roberts, C., Robson, J., Ruprich-Robert, Y., Sanchez-Gomez, E., Seddon, J. & Senan, R. (2022). Coupled climate response to Atlantic multidecadal variability in a multi-model multi-resolution ensemble. Climate Dynamics, 59, 805-836. doi:10.1007/s00382-022-06406-x [publisher-version][any-fulltext]
  • Jungclaus, J., Lorenz, S., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crueger, T., de Vrese, P., Gayler, V., Giorgetta, M., Gutjahr, O., Haak, H., Hagemann , S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W., Nabel, J., Notz, D., Pohlmann, H., Putrasahan, D., Raddatz, T., Ramme, L., Redler, R., Reick, C., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B., Marotzke, J. & Claussen, M. (2022). The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 14: e2021MS002813. doi:10.1029/2021MS002813 [publisher-version]
  • Korn, P., Brüggemann, N., Jungclaus, J., Lorenz, S., Gutjahr, O., Haak, H., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Notz, D., Putrasahan, D., Singh, V., von Storch, J.-S., Zhu , X. & Marotzke, J. (2022). ICON-O: The Ocean Component of the ICON Earth System Model - Global simulation characteristics and local telescoping capability. Journal of Advances in Modeling Earth Systems, 14: e2021MS002952. doi:10.1029/2021MS002952 [publisher-version]
  • Moreno-Chamarro, E., Caron, L.-P., Loosveldt Tomas, S., Vegas-Regidor, J., Gutjahr, O., Moine, M.-P., Putrasahan, D., Roberts, C., Roberts, M., Senan, R., Terray, L., Tourigny, E. & Vidale, P. (2022). Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models. Geoscientific Model Development, 15, 269-289. doi:10.5194/gmd-15-269-2022 [publisher-version][supplementary-material]
  • Rohrschneider, T., Baehr, J., Lüschow, V., Putrasahan, D. & Marotzke, J. (2022). Nonlocal and local wind forcing dependence of the Atlantic meridional overturning circulation and its depth scale. Ocean Science, 18, 979-996. doi:10.5194/os-18-979-2022 [supplementary-material][publisher-version]
  • von Storch, J.-S. (2022). On equilibrium fluctuations. Tellus Series A-Dynamic Meteorology and Oceanography, 74, 364-381. doi:10.16993/tellusa.25 [publisher-version][supplementary-material][supplementary-material]
  • Gutjahr, O., Brüggemann , N., Haak, H., Jungclaus, J., Putrasahan, D., Lohmann, K. & von Storch, J.-S. (2021). Comparison of ocean vertical mixing schemes in the Max Planck Institute Earth System Model (MPI-ESM1.2). Geoscientific Model Development, 14, 2317-2349. doi:10.5194/gmd-14-2317-2021 [supplementary-material][publisher-version]
  • Hariadi, M., van der Schrier, G., Steeneveld, G.-J., Sopaheluwakan, A., Tank, A., Roberts, M., Moine, M.-P., Bellucci, A., Senan, R., Tourigny, E. & Putrasahan, D. (2021). Evaluation of onset, cessation and seasonal precipitation of the Southeast Asia rainy season in CMIP5 regional climate models and HighResMIP global climate models. International Journal of Climatology, 42, 3007-3024. doi:10.1002/joc.7404 [publisher-version]
  • Lohmann, K., Putrasahan, D., von Storch, J.-S., Gutjahr, O., Jungclaus, J. & Haak, H. (2021). Response of northern North Atlantic and Atlantic meridional overturning circulation to reduced and enhanced wind stress forcing. Journal of Geophysical Research: Oceans, 126: e2021JC017902. doi:10.1029/2021JC017902 [supplementary-material][publisher-version]
  • Lüschow, V., Marotzke, J. & von Storch, J.-S. (2021). Overturning response to a surface wind stress doubling in an eddying and a non-eddying ocean. Journal of Physical Oceanography, 51, 1007-1020. doi:10.1175/JPO-D-20-0176.1 [publisher-version]
  • Putrasahan, D., Gutjahr, O., Haak, H., Jungclaus, J., Lohmann, K., Roberts, M. & von Storch, J.-S. (2021). Effect of resolving ocean eddies on the transient response of global mean surface temperature to abrupt 4xCO2 forcing. Geophysical Research Letters, 48: e2020GL092049. doi:10.1029/2020GL092049 [any-fulltext][supplementary-material][publisher-version]
  • Putrasahan, D. & von Storch, J.-S. (2021). Piecewise evolutionary spectra: A practical approach to understanding projected changes in spectral relationships between circulation modes and regional climate under global warming. Geophysical Research Letters, 48: e2021GL093898. doi:10.1029/2021GL093898 [publisher-version][supplementary-material]
  • Bador, M., Boé, J., Terray, L., Alexander, L., Bellucci, A., Haarsma, R., Koenigk, T., Moine, M.-P., Lohmann, K., Putrasahan, D., Roberts, C., Roberts, M., Scoccimarro, E., Schiemann, R., Seddon, J., Senan, R., Valcke, S. & Vanniere, B. (2020). Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. Journal of Geophysical Research: Atmospheres, 125: e2019JD032184. doi:10.1029/2019JD032184 [publisher-version]
  • Boe, J., Terray, L., Moine, M.-P., Valke, S., Bellucci, A., Drijfhout, S., Haarsma, R., Lohmann, K., Putrasahan, D., Roberts, C., Roberts, M., Scoccimarro, E., Seddon, J., Senan, R. & Wyser, K. (2020). Past long-term summer warming over western Europe in new generation climate models: role of large-scale atmospheric circulation. Environmental Research Letters, 15. doi:10.1088/1748-9326/ab8a89 [publisher-version]
  • Demory, M.-E., Berthou, S., Fernández, J., Sørland, S., Brogli, R., Roberts, M., Beyerle, U., Seddon, J., Haarsma, R., Schär, C., Buonomo, E., Christensen, O., Ciarlo, J., Fealy, R., Nikulin, G., Peano, D., Putrasahan, D., Roberts, C., Senan, R., Steger, C., Teichmann, C. & Vautard, R. (2020). European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 13, 5485-5506. doi:10.5194/gmd-13-5485-2020 [publisher-version][supplementary-material]
  • Hewitt, H., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E., Chassignet, E., Fox-Kemper, B., Hyder, P., Marshall, D., Popova, E., Treguier, A.-M., Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M., Kuhlbrodt, T., Arsouze, T., Bellucci, A., Castruccio, F., Gan, B., Putrasahan, D., Roberts, C., Van Roekel, L. & Zhang, Q. (2020). Resolving and parameterising the ocean mesoscale in Earth System Models. Current Climate Change Reports, 6, 137-152. doi:10.1007/s40641-020-00164-w [publisher-version][any-fulltext]
  • Huang, X., Zhou, T., Dai, A., Li, H., Li, C., Chen, X., Lu, J. & von Storch, J.-S. (2020). South Asian summer monsoon projections constrained by the Intedacadal Pacific Oscillation. Science Advances, 6: eaay6546. doi:10.1126/sciadv.aay6546 [publisher-version][supplementary-material]
  • Li, Z. & von Storch, J.-S. (2020). M2 internal-tide generation in STORMTIDE2. Journal of Geophysical Research: Oceans, 125: e2019JC015453. doi:10.1029/2019JC015453 [supplementary-material][supplementary-material][supplementary-material][publisher-version]
  • Löb, J., Köhler, J., Mertens, C., Walter, M., Li, Z., von Storch, J.-S., Zhao, Z. & Rhein, M. (2020). Observations of the low-mode internal tide and its interaction with mesoscale flow south of the Azores. Journal of Geophysical Research: Oceans, 125: e2019JC015879. doi:10.1029/2019JC015879 [publisher-version]
  • Lüschow, V. (2020). The deep western boundary current in an eddying ocean. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 229. doi:10.17617/2.3243036 [publisher-version]
  • Molteni, F., Roberts, C., Senan, R., Keeley, S., Bellucci, A., Corti, S., Fuentes Franco, R., Haarsma, R., Levine, X., Putrasahan, D., Roberts, M. & Terray, L. (2020). Boreal-winter teleconnections with tropical Indo-Pacific rainfall in HighResMIP historical simulations from the PRIMAVERA project. Climate Dynamics, 55, 1843-1873. doi:10.1007/s00382-020-05358-4 [publisher-version]
  • Reimann, L. & von Storch, J.-S. (2020). A phase-space consideration of changing climate-PDF. Climate Dynamics, 54, 2633-2662. doi:10.1007/s00382-020-05130-8
  • Roberts, M., Jackson, L., Roberts, C., Meccia, V., Docquier, D., Koenigk, T., Ortega, P., Moreno-Chamarro, E., Bellucci, A., Coward, A., Drijfhout, S., Exarchou, E., Gutjahr, O., Hewitt, H., Iovino, D., Lohmann, K., Putrasahan, D., Schiemann, R., Seddon, J., Terray, L., Xu, X., Zhang, Q., Chang, P., Yeager, S., Castruccio, F., Zhang, S. & Wu, L. (2020). Sensitivity of the Atlantic Meridional Overturning Circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes. Journal of Advances in Modeling Earth Systems, 12: e2019MS002014. doi:10.1029/2019MS002014 [publisher-version][supplementary-material]
  • Roberts, M., Camp, J., Seddon, J., Vidale, P., Hodges, K., Vanniere, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P., Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts, C., Senan, R., Zarzycki, C. & Ullrich, P. (2020). Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multimodel ensemble. Journal of Climate, 33, 2557-2583. doi:10.1175/JCLI-D-19-0639.1 [publisher-version]
  • Dolaptchiev, S., Achatz, U. & Reitz, T. (2019). Planetary geostrophic Boussinesq dynamics: Barotropic flow, baroclinic instability and forced stationary waves. Quarterly Journal of the Royal Meteorological Society, 145, 3751-3765. doi:10.1002/qj.3655 [publisher-version]
  • Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J., von Storch, J.-S., Brüggemann , N., Haak, H. & Stoessel, A. (2019). Max Planck Institute Earth System Model (MPI-ESM1.2) for High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 12, 3241-3281. doi:10.5194/gmd-12-3241-2019 [publisher-version]
  • Köhler, J., Walter, M., Mertens, C., Stiehler, J., Li, Z., von Storch, J.-S. & Rhein, M. (2019). Energy flux observations in an internal tide beam in the eastern North Atlantic. Journal of Geophysical Research - Oceans, 124, 5747-5764. doi:10.1029/2019JC015156 [publisher-version]
  • Lüschow, V., von Storch, J.-S. & Marotzke, J. (2019). Diagnosing the influence of mesoscale eddy fluxes on the deep western boundary current in the 1/10° STORM / NCEP simulation. Journal of Physical Oceanography, 49, 751-764. doi:10.1175/JPO-D-18-0103.1 [publisher-version]
  • Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Kornblueh, L., Takano, Y., Kröger, J., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B. & Marotzke, J. (2019). The Max Planck Institute Grand Ensemble - Enabling the Exploration of Climate System Variability. Journal of Advances in Modeling Earth Systems, 11, 2050-2069. doi:10.1029/2019MS001639 [publisher-version][supplementary-material]
  • Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Popke, D., Gayler, V., Giorgetta, M., Goll, D., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jiménez de la Cuesta Otero, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W., Nabel, J., Nam, C., Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T., Rast, S., Redler, R., Reick, C., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., de Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Roeckner, E. & Winkler, A. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998-1038. doi:10.1029/2018MS001400 [publisher-version]
  • Mertens, C., Köhler, J., Walter, M., von Storch, J.-S. & Rhein, M. (2019). Observations and models of low-mode internal waves in the ocean. In Eden, C. & Iske, A. (Eds.), Energy Transfers in Atmosphere and Ocean (pp.127-143). Cham: Springer International Publishing.
  • Putrasahan, D., Lohmann, K., von Storch, J.-S., Jungclaus, J., Gutjahr, O. & Haak, H. (2019). Surface flux drivers for the slowdown of the Atlantic Meridional Overturning Circulation in a high resolution global coupled climate model. Journal of Advances in Modeling Earth Systems, 11, 1349-1363. doi:10.1029/2018MS001447 [supplementary-material][publisher-version]
  • Tian, F., von Storch, J.-S. & Hertwig, E. (2019). Impact of SST diurnal cycle on ENSO asymmetry. Climate Dynamics, 52, 2399-2411. doi:10.1007/s00382-018-4271-7 [publisher-version]
  • von Storch, J.-S., Badin, G. & Oliver, M. (2019). The interior energy pathway: Inertia-gravity wave emission by oceanic flows. In Eden, C. & Iske, A. (Eds.), Energy Transfers in Atmosphere and Ocean (pp.53-85). Cham: Springer International Publishing.
  • von Storch, J.-S. (2019). Energetics of the climate system. In Oxford Research Encyclopedia of Climate Science Oxford University Press. doi:10.1093/acrefore/9780190228620.013.88
  • Müller, W., Jungclaus, J., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleinen, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F. & Marotzke, J. (2018). A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM 1.2 - HR). Journal of Advances in Modeling Earth Systems, 10, 1383 -1413. doi:10.1029/2017MS001217 [publisher-version]
  • Stössel, A., von Storch, J.-S., Notz, D., Haak, H. & Gerdes, R. (2018). High-frequency and meso-scale winter sea-ice variability in the Southern Oscillation in a high resolution global ocean model. Ocean Dynamics, 68, 347-361. doi:10.1007/s10236-018-1135-y
  • Yuan, D., Li, X., Wang, Z., Li, Y., Wang, J., Yang, Y., Hu, X., Tan, S., Zhou, H., Wardana, A., Surinati, D., Purwandana, A., Ismail, M., Avianto, P., Dirhamsyah, D., Arifin, Z. & von Storch, J.-S. (2018). Observed transport variations in the Maluku Channel of the Indonesian Seas associated with western boundary current changes. Journal of Physical Oceanography, 48, 1803-1813. doi:10.1175/JPO-D-17-0120.1 [publisher-version]
  • Berner, J., Achatz, U., Batte, L., Bengtsson, L., De La Camara, A., Christensen, H., Colangeli, M., Coleman, D., Crommelin, D., Dolaptchiev, S., Franzke, C., Friederichs, P., Imkeller, P., Järvinen, H., Juricke, S., Kitsios, V., Lott, F., Lucarini, V., Mahajan, S., Palmer, T., Penland, C., Sakradzija, M., von Storch, J.-S., Weisheimer, A., Weniger, M., Williams, P. & Yano, J.-I. (2017). Stochastic parameterization: Towards a new view of weather and climate models. Bulletin of the American Meteorological Society, 98, 565-587. doi:10.1175/BAMS-D-15-00268.1 [publisher-version]
  • Li, Z., von Storch, J.-S. & Müller , M. (2017). The K1 internal tide simulated by a 1/10° OGCM. Ocean Modelling, 113, 145-156. doi:10.1016/j.ocemod.2017.04.002
  • Miller, A., Collins, M., Gualdi, S., Jensen, T., Misra, V., Pezzi, L., Pierce, D., Putrasahan, D., Seo, H. & Tseng, Y.-H. (2017). Coupled ocean-atmosphere modeling and predictions. Journal of Marine Research, 75, 361-402. doi:10.1357/002224017821836770
  • Putrasahan, D., Kamenkovich, I., Le Hénaff, M. & Kirtman, B. (2017). Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico. Geophysical Research Letters, 44, 6352-6362 . doi:10.1002/2017GL072884 [publisher-version]
  • Tian, F., von Storch, J.-S. & Hertwig, E. (2017). Air–sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components. Climate Dynamics, 48, 2819-2836. doi:10.1007/s00382-016-3228-y [publisher-version]
  • Haarsma, R., Roberts, M., Vidale, P., Senior, C., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J. & von Storch, J.-S. (2016). High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9, 4185-4208. doi:10.5194/gmd-2016-66 [publisher-version]
  • Li, Z. (2016). Internal tides simulated by a 1/10° OGCM. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 179. doi:10.17617/2.2297244 [publisher-version]
  • Rimac, A., von Storch, J.-S. & Eden, C. (2016). The total energy flux leaving the ocean's mixed layer. Journal of Physical Oceanography, 46, 1885-1900. doi:10.1175/JPO-D-15-0115.1 [publisher-version]
  • von Storch, J.-S., Haak, H., Hertwig, E. & Fast, I. (2016). Vertical heat and salt fluxes due to resolved and parameterized meso-scale eddies. Ocean Modelling, 108, 1-18. doi:10.1016/j.ocemod.2016.10.001
  • Boers, N., Bookhagen, B., Marengo, J., Marwan, N., von Storch, J.-S. & Kurths, J. (2015). Extreme rainfall of the South American monsoon system: A dataset comparison using complex networks. Journal of Climate, 28, 1031-1056. doi:10.1175/JCLI-D-14-00340.1 [publisher-version]
  • Corti, S., Palmer, T., Balmaseda, M., Weisheimer, A., Drijfhout, S., Dunstone, N., Hazeleger, W., Kröger, J., Pohlmann, H., Smith, D., von Storch, J.-S. & Wouters, B. (2015). Impact of initial conditions versus external forcing in decadal climate predictions: A sensitivity experiment. Journal of Climate, 28, 4454-4470. doi:10.1175/JCLI-D-14-00671.1 [publisher-version]
  • Hertwig, E., Lunkeit, F. & Fraedrich, K. (2015). Low-frequency climate variability of an aquaplanet. Theoretical and Applied Climatology, 121, 459-478. doi:10.1007/s00704-014-1226-8
  • Hertwig, E., von Storch, J.-S., Handorf, D., Dethloff, D. & Krismer, T. (2015). Effect of horizontal resolution on ECHAM6-AMIP performance. Climate Dynamics, 45, 185-211. doi:10.1007/s00382-014-2396-x
  • Krismer, T., Giorgetta, M., Fast, I. & von Storch, J.-S. (2015). The influence of the spectral truncation on the simulation of waves in the tropical stratosphere. Journal of the Atmospheric Sciences, 72, 3819-3828. doi:10.1175/JAS-D-14-0240.1 [publisher-version]
  • Li, Z., von Storch, J.-S. & Müller, M. (2015). The M2 internal tide simulated by a 1/10° OGCM. Journal of Physical Oceanography, 45, 3119-3135. doi:10.1175/JPO-D-14-0228.1 [publisher-version]
  • Exarchou, E., von Storch, J.-S. & Jungclaus, J. (2014). Sensitivity of transient climate change to tidal mixing : Southern Ocean heat uptake in climate change experiments performed with MPI ECHAM/MPIOM. Climate Dynamics, 42, 1755-1773. doi:10.1007/s00382-013-1776-y
  • Liu , C., Wang, F., Chen, X. & von Storch, J.-S. (2014). Interannual variability of the Kuroshio onshore intrusion along the East China Sea shelf break: Effect of the Kuroshio volume transport. Journal of Geophysical Research: Oceans, 6190-6209. doi:10.1002/2013JC009653 [publisher-version]
  • Müller, M., Cherniawsky, J., Foreman, M. & von Storch, J.-S. (2014). Seasonal variation of the M2 tide. Ocean Dynamics, 64, 159-177. doi:10.1007/s10236-013-0679-0
  • Rimac, A. (2014). The role of wind induced near-inertial waves on the energetics of the ocean. Phd Thesis, Hamburg: Universität Hamburg. Berichte zur Erdsystemforschung, 160. doi:10.17617/2.2075939 [publisher-version]
  • Hazeleger, W., Wouters, B., van Oldenborgh, G., Corti, S., Smith, D., Dunstone, N., Kröger, J., Pohlmann, H. & von Storch, J.-S. (2013). Predicting multi-year North Atlantic ocean variability. Journal of Geophysical Research-Oceans, 118, 1087-1098. doi:10.1002/jgrc.20117 [publisher-version]
  • Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D. & von Storch, J.-S. (2013). Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI Earth System Model. Journal of Advances in Modeling Earth Systems, 5, 422-446. doi:10.1002/jame.20023 [publisher-version]
  • Li, C., von Storch, J.-S. & Marotzke, J. (2013). Deep-ocean heat uptake and equilibrium climate response. Climate Dynamics, 40, 1071-1086. doi:10.1007/s00382-012-1350-z
  • Li, H. & von Storch, J.-S. (2013). On the fluctuating buoyancy fluxes simulated in a 1/10° OGCM. Journal of Physical Oceanography, 43, 1270-1287. doi:10.1175/JPO-D-12-080.1 [publisher-version]
  • Rimac, A., von Storch, J.-S., Eden, C. & Haak, H. (2013). The influence of high-resolution wind forcing on the power input to near-inertial waves in the ocean. Geophysical Research Letters, 40, 4882-4886. doi:10.1002/grl.50929 [publisher-version]
  • Exarchou, E. (2012). Tidal mixing and large-scale circulation. Phd Thesis, Hamburg: Hamburg University. Berichte zur Erdsystemforschung, 112. doi:10.17617/2.1404598 [publisher-version]
  • Exarchou, E., von Storch, J.-S. & Jungclaus, J. (2012). Impact of tidal mixing with different scales of bottom roughness on the general circulation. Ocean Dynamics, 62, 1545-1563. doi:10.1007/s10236-012-0573-1
  • Hernandez-Deckers, D. & von Storch, J.-S. (2012). Impact of the warming pattern on global energetics. Journal of Climate, 25, 5223-5240. doi:10.1175/JCLI-D-11-00468.1
  • Kröger, J., Müller, W. & von Storch, J.-S. (2012). Impact of different ocean reanalyses on decadal climate prediction. Climate Dynamics, 39, 795-810. doi:10.1007/s00382-012-1310-7
  • Miller, M., Cherniawsky, J., Foreman, M. & von Storch, J.-S. (2012). Global M 2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophysical Research Letters, 39: L19607. doi:10.1029/2012GL053320 [publisher-version]
  • Müller, W., Baehr, J., Haak, H., Jungclaus, J., Kröger, J., Matei, D., Notz, D., Pohlmann, H., von Storch, J.-S. & Marotzke, J. (2012). Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophysical Research Letters, 39: L22707. doi:10.1029/2012GL053326 [publisher-version]
  • Reichler, T., Kim, J., Manzini, E. & Kröger, J. (2012). A stratospheric connection to Atlantic climate variability. Nature Geoscience, 5, 783-787. doi:10.1038/NGEO1586
  • von Storch, J.-S., Eden, C., Fast, I., Haak, H., Hernández-Deckers, D., Maier-Reimer, E., Marotzke, J. & Stammer, D. (2012). An estimate of Lorenz energy cycle for the world ocean based on the 1/10º STORM/NCEP simulation. Journal of Physical Oceanography, 42, 2185-2205. doi:10.1175/JPO-D-12-079.1 [publisher-version]
  • Hernandez-Deckers, D. & von Storch, J.-S. (2011). The energetics response to a warmer climate: Relative contributions from the transient and stationary eddies. Earth System Dynamics, 2, 105-120. doi:10.5194/esd-2-105-2011 [publisher-version][any-fulltext]
  • Kröger, J. & Kucharski, F. (2011). Sensitivity of ENSO characteristics to a new interactive flux correction scheme in a coupled GCM. Climate Dynamics, 36, 119-137. doi:10.1007/s00382-010-0759-5 [publisher-version]
  • Krueger, O. & von Storch, J.-S. (2011). A simple empirical model for decadal climate prediction. Journal of Climate, 24, 1276-1283. doi:10.1175/2010JCLI3726.1 [publisher-version]
  • Hernandez-Deckers, D. & von Storch, J.-S. (2010). Energetics responses to increases in greenhouse gas concentration. Journal of Climate, 23, 3874-3887. doi:10.1175/2010JCLI3176.1 [publisher-version]
  • Masumoto, Y., Sasaki, H. & von Storch, J.-S. (2010). Editorial to OFES special issue of Ocean Dynamics. Ocean dynamics, 60, 631-632. doi:10.1007/s10236-010-0299-x [publisher-version]
  • Seiffert, R. & von Storch, J.-S. (2010). A stochastic analysis of the impact of small-scale fluctuations on the tropospheric temperature response to CO2 doubling. Journal of Climate, 23, 2307-2319. doi:10.1175/2009JCLI3043.1 [publisher-version]
  • von Storch, J.-S. (2010). Variations of vertical velocity in the deep oceans simulated by 1/10 degree OGCM. Ocean Dynamics, 60, 759-770. doi:10.1007/s10236-010-0303-5
  • Beena, B. & von Storch, J.-S. (2009). Effects of fluctuating daily surface fluxes on the time-mean oceanic circulation. Climate Dynamics, 33, 1-18. doi:10.1007/s00382-009-0575-y [publisher-version]
  • Haerter, J., Roeckner, E., Tomassini, L. & von Storch, J.-S. (2009). Parametric uncertainty effects on aerosol radiative forcing. Geophysical Research Letters, 36: L15707. doi:10.1029/2009GL039050 [publisher-version]
  • Seiffert, R. (2009). Impact of small-scale fluctuations on climate sensitivity and its stochastic analysis. Phd Thesis, Hamburg: University of Hamburg. Berichte zur Erdsystemforschung, 58. doi:10.17617/2.994113 [publisher-version]
  • Gerkema, T. & Exarchou, E. (2008). Internal-wave properties in weakly stratified layers. Journal of Marine Research, 66, 617-644.
  • Seiffert, R. & von Storch, J.-S. (2008). Impact of atmospheric small-scale fluctuations on climate sensitivity. Geophysical Research Letters, 35: L10704. doi:10.1029/2008GL033483 [publisher-version]
  • von Storch, J.-S. & Haak, H. (2008). Impact of daily fluctuations on long-term predictability of the Atlantic meridional overturning circulation. Geophysical Research Letters, 35: L01609. doi:10.1029/2007GL032385 [publisher-version]
  • von Storch, J.-S. (2008). Toward climate prediction: Interannual potential predictability due to an increase in CO2 concentration as diagnosed from an ensemble of AO-GCM integrations. Journal of Climate, 35, 4607-4628. [publisher-version]
  • von Storch, J.-S., Botzet, M. & Ehlert, I. (2008). What balances the decrease in net upward thermal radiation at the surface in climate change experiments?. The Open Atmospheric Science Journal, 2, 79-90. doi:10.2174/1874282300802010079. [publisher-version]
  • von Storch, J.-S., Sasaki, H. & Marotzke, J. (2007). Wind-generated power input to the deep ocean: An estimate using a (1)/(10)degrees general circulation model. Journal of Physical Oceanography, 37, 657-672. doi:10.1175/JPO3001.1 [publisher-version]
  • Beena, B. (2006). Effect of daily surface flux anomalies on the time-mean oceanic circulation. Phd Thesis, Hamburg: University of Hamburg. Berichte zur Erdsystemforschung, 31. doi:10.17617/2.994502 [publisher-version]
  • Stenzel, O. & von Storch, J.-S. (2005). The effect of orography on the global atmospheric angular momentum and the general circulation. Meteorologische Zeitschrift, 14, 387-393. doi:10.1127/0941-2948/2005/0041 [publisher-version]
  • von Storch, J.-S., Montavez, J. & Beena, B. (2005). EMAD: an empirical model of air-sea fluxes. Meteorologische Zeitschrift, 14(Special Issue of the SFB 512), 755-762. doi:10.1127/0941-2948/2005/0080 [publisher-version]
Veit Lüschow Hamburg, DE
Eileen Hertwig DKRZ, Hamburg, DE
Chengcheng Yang CSC-Student (China Scholarship Council)

Contact

Prof. Dr. Jin-Song von Storch

Group leader
Phone: +49 (0)40 41173-155
jin-song.von.storch@we dont want spammpimet.mpg.de

More Content

Climate Variability

Our department uses models, observations, and theory to investigate the role of the ocean in climate variability and climate change on all timescales from hours to millennia ...

 

Read more

Global flow visualization in 100m depth, illustrating several eddy-rich areas around the world.

Project EERIE: Ocean eddies for better climate projections

The Max Planck Institute for Meteorology (MPI-M) is successfully involved in the new EU project EERIE (European Eddy-RIch Earth system models).…

[Translate to English:]

Only eddy-resolving models capture the complete range of AMOC responses to surface winds

In a new paper, Veit Lüschow, Jin-Song von Storch and Jochem Marotzke from the Max Planck Institute for Meteorology show that the Atlantic meridional…