
Beobachtungen, Analyse und Synthese
Das übergeordnete Ziel der Gruppe "Beobachtungen, Analyse und Synthese" ist es, sich aktiv an der Datenerhebung in abgelegenen Ozeangebieten zu beteiligen, um unser Verständnis des Erdsystems zu verbessern. Unser Hauptanliegen ist es, Lösungen für eine bessere Überwachung und ein besseres Verständnis der datenarmen und unzureichend beprobten Ozeanregionen zu schaffen. Mit Hilfe neuartiger Analysemethoden (z. B. auf der Grundlage neuronaler Netze) untersuchen wir mit Messungen Schwankungen im marinen Kohlenstoffkreislauf und liefern der wissenschaftlichen Gemeinschaft damit neue Beobachtungsdaten.
Beobachtungen
Seit 2018 sammelt die Gruppe „Beobachtung, Analyse und Synthese“ eine beträchtliche Anzahl an Messungen des CO2-Partialdrucks an der Meeresoberfläche (pCO2) an Bord von Segelbooten während Weltumsegelungen. Er dient der Berechnung der CO2-Flüsse zwischen Luft und Meer. Die Zusammenarbeit mit den Skippern und ihren Teams führte zur Sammlung wertvoller physikalisch-chemischer Daten in dem am weitesten entfernten großen Meeresbecken – dem Südlichen Ozean. Der Südliche Ozean ist die größte marine Kohlenstoffsenke für anthropogenes CO2, doch die Datenverfügbarkeit ist begrenzt, und die Prozesse, die die natürlichen Schwankungen im Bereich der Kohlenstoffsenke antreiben, sind weitgehend unbekannt. Segelboote bieten die Möglichkeit, die Lücke im pCO2-Beobachtungsnetz an der Meeresoberfläche zu schließen und werden daher als neuartige Beobachtungsplattform weiter erforscht.
Die Gruppe sammelt auch Daten an Bord von Forschungsschiffen und führt Laborexperimente durch. In den letzten Jahren haben wir an verschiedenen internationalen und interdisziplinären Projekten, Feldkampagnen und Instrumententests teilgenommen. Durch die Zusammenarbeit mit Wissenschaftler*innen aus aller Welt findet ein intensiver Wissens- und Erfahrungsaustausch statt, der unsere Arbeit belebt und die Erforschung des Ozeans umso spannender macht.
Analyse
Das Beobachtungsnetz mit hochauflösenden Messungen des CO2-Partialdrucks an der Meeresoberfläche an Bord von Segel- und Forschungsschiffen bietet die Möglichkeit, (sub-)mesoskalige Schwankungen der CO2-Aufnahme zwischen Atmosphäre und Ozean zu untersuchen.
Mit Hilfe des Beobachtungsnetzwerks ist es möglich,
- die Grenzen zu identifizieren, an denen thermische Einflüsse gegenüber biologischen, physikalischen und chemischen Einflüssen die Schwankungen des pCO2 dominieren, und zu untersuchen, wie sich diese Grenzen im Laufe der Zeit verschieben
- kleinskalige Schwankungen zu untersuchen
- CO2Variabilität durch lokale Algenblüten zu quantifizieren, die kurzfristige Schwankungen des pCO2 an der Meeresoberfläche verursachen.
- großflächige Änderungen im pCO2 an der Meeresoberfläche zu identifizieren, die durch Frontalzonen, also Übergangszonen zwischen verschiedenen Wassermassen, verursacht werden.
Die Gruppe hat es sich zur Aufgabe gemacht, ein grundlegendes Prozessverständnis zu liefern, um die nächste Generation von hochauflösenden Ozeanmodellen zu verbessern.

Synthese
Unsere Gruppe kombiniert, extrapoliert und interpretiert verschiedene Beobachtungen des Erdsystems, von Satellitendaten über Daten an Bord von Schiffen bis hin zu Daten von autonomen Messrobotern. Unser Ziel ist es, durch die Datensynthese unser Verständnis der physikalischen und biogeochemischen Prozesse zu verbessern, die die Aufnahme von Kohlenstoff und Wärme im globalen Ozean vorantreiben, sowie deren Auswirkungen auf klimarelevante Zeitskalen. Die Gruppe setzt eine Vielzahl von Instrumenten ein, die von der klassischen statistischen Analyse über Datengewinnung bis hin zu künstlichen neuronalen Netzen reichen. Ziel ist es, alle verfügbaren in-situ-Informationen zu bündeln und neue Erkenntnisse zur Bewertung von Erdsystemmodellen und zur Verbesserung von Zukunftsprojektionen und kurzfristigen Vorhersagen zu gewinnen.
Während ein Schwerpunkt auf dem globalen Ozean liegt, konzentriert sich die Gruppe darüber hinaus auf abgelegene Ozeanregionen wie den Südlichen Ozean, den Arktischen Ozean und die Küstenmeere. Dort sind die Daten spärlich und neue Techniken sind erforderlich, um die verfügbaren Beobachtungen sinnvoll zu interpretieren.
Landschützer, P., Ilyina, T., and Lovenduski, N. S.: Detecting regional modes of variability in observation‐based surface ocean pCO2. Geophysical Research Letters, 46. doi:10.1029/2018GL081756, 2019
Landschützer, P., Gruber, N., Bakker, D. C. E., Stemmler, I. and Six. K. D.: Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2. Nature Climate Change, 8, 146–150, doi:10.1038/s41558-017-0057-x, 2018
Landschützer, P., Gruber, N. and Bakker, D. C. E.: Decadal variations and trends of the global ocean carbon sink, Global Biogeochemical Cycles, 30, 1396- 1417, doi:10.1002/2015GB005359, 2016
Landschützer, P., Gruber, N., Haumann, F. A. Rödenbeck, C. Bakker, D. C. E., van Heuven, S. Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B. and Wanninkhof, R: The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221-1224. doi:10.1126/science.aab2620, 2015
Keppler, L., Landschützer, P., Gruber, N., Lauvset, S. and Stemmler, I.: Seasonal Carbon Dynamics in the Near-Global Ocean, Global Biogeochemical Cycles, 34, e2020GB006571. doi.org/10.1029/2020GB006571, 2020
Keppler, L. and Landschützer, P.: Regional Wind Variability Modulates the Southern Ocean Carbon Sink, Scientific Reports, 9, 7384, doi: 10.1038/s41598-019-43826-y, 2019
Olivier, L., Boutin, J., Reverdin, G., Lefèvre, N., Landschützer, P., Speich, S., Karstensen, J., Ritschel, M., and Wanninkhof, R.: Impact of North Brazil Current rings on air-sea CO2 flux variability in winter 2020, Biogeosciences Discuss. [preprint], doi.org/10.5194/bg-2021-269, in review, 2021.
Gruppenmitglieder und Publikationen
- Gruber, N., Bakker, D., DeVries, T., Gregor, L., Hauck, J., Landschützer, P., McKinley, G. & Müller, J. (2023). Trends and variability in the ocean carbon sink. Nature Reviews Earth and Environment, 4, 119-134. doi:10.1038/s43017-022-00381-x
- Landschützer, P., Tanhua, T., Behncke, J. & Keppler, L. (2023). Sailing through the southern seas of air-sea CO2 flux uncertainty. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381: 20220064. doi:10.1098/rsta.2022.0064 [ Fulltext]
- Mayot, N., Le Quéré, C., Rödenbeck, C., Bernardello, R., Bopp, L., Djeutchouang, L., Gehlen, M., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ilyina, T., Keeling, R., Landschützer, P., Manning, A., Patara, L., Resplandy, L., Schwinger, J., Séférian, R., Watson, A., Wright, R. & Zeng, J. (2023). Climate-driven variability of the Southern Ocean CO2 sink. Philosophical Transactions of the Royal Society of London A, 381: 20220055. doi:10.1098/rsta.2022.0055 [ Fulltext]
- Carroll, D., Menemenlis, D., Dutkiewicz, S., Lauderdale, J., Adkins, J., Bowman, K., Brix, H., Fenty, I., Gierach, M., Hill, C., Jahn, O., Landschützer, P., Manizza, M., Mazloff, M., Miller, C., Schimel, D., Verdy, A., Whitt, D. & Zhang, H. (2022). Attribution of space-time variability in global-ocean dissolved inorganic Carbon. Global Biogeochemical Cycles, 36: e2021GB007162. doi:10.1029/2021GB007162 [ Fulltext]
- Dong, Y., Bakker, D., Bell, T., Huang, B., Landschützer, P., Liss, P. & Yang, M. (2022). Update on the temperature corrections of global air-sea CO2 flux estimates. Global Biogeochemical Cycles, 36: e2022GB007360. doi:10.1029/2022GB007360 [ Fulltext]
- Friedlingstein, P., Jones, M., O'Sullivan, M., Andrew, R., Bakker, D., Hauck, J., Le Quéré, C., Peters, G., Peters, W., Pongratz, J., Sitch, S., Canadell, J., Ciais, P., Jackson, R., Alin, S., Anthoni, P., Bates, N., Becker, M., Bellouin, N., Bopp, L., Chau, T., Chevallier, F., Chini, L., Cronin, M., Currie, K., Decharme, B., Djeutchouang, L., Dou, X., Evans, W., Feely, R., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R., Hurtt, G., Iida, Y., Ilyina, T., Luijkx, I., Jain, A., Jones, S., Kato, E., Kennedy, D., Goldewijk, K., Knauer, J., Korsbakken, J., Körtzinger, A., Landschützer, P., Lauvset, S., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P., Melton, J., Munro, D., Nabel, J., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A., Sweeney, C., Tanhua, T., Tans, P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A., Willis, D., Wiltshire, A., Yuan, W., Yue, C., Yue, X., Zaehle, S. & Zeng, J. (2022). Global carbon budget 2021. Earth System Science Data, 14, 1917-2005. doi:10.5194/essd-14-1917-2022 [ Fulltext]
- Friedlingstein, P., O'Sullivan, M., Jones, M., Andrew, R., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I., Olsen, A., Peters, G., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J., Ciais, P., Jackson, R., Alin, S., Alkama, R., Arneth, A., Arora, V., Bates, N., Becker, M., Bellouin, N., Bittig, H., Bopp, L., Chevallier, F., Chini, L., Cronin, M., Evans, W., Falk, S., Feely, R., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R., Hurtt, G., Iida, Y., Ilyina, T., Jain, A., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Goldewijk, K., Knauer, J., Korsbakken, J., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M., Metzl, N., Monacci, N., Munro, D., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T., Schwinger, J., Séférian, R., Shutler, J., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A., Sweeney, C., Takao, S., Tanhua, T., Tans, P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G., Walker, A., Wanninkhof, R., Whitehead, C., Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J. & Zheng, B. (2022). Global carbon budget 2022. Earth System Science Data, 14, 4811-4900. doi:10.5194/essd-14-4811-2022 [ Fulltext]
- Landschützer, P., Keppler, L. & Ilyina, T. (2022). Ocean systems. In Poulter, B. (Eds.), Balancing greenhouse gas budgets (pp.427-452). Amsterdam: Elsevier.
- Mackay, N., Watson, A., Suntharalingam, P., Chen, Z. & Landschützer, P. (2022). Improved winter data coverage of the Southern Ocean CO2 sink from extrapolation of summertime observations. Communications Earth and Environment, 3: 265. doi:10.1038/s43247-022-00592-6 [ Fulltext]
- Mignot, A., von Schuckmann, K., Landschützer, P., Gasparin, F., van Gennip, S., Perruche, C., Lamouroux, J. & Amm, T. (2022). Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves. Nature Communications, 13: 4300. doi:10.1038/s41467-022-31983-0 [ Fulltext]
- Olivarez, H., Lovenduski, N., Brady, R., Fay, A., Gehlen, M., Gregor, L., Landschützer, P., McKinley, G., McKinnon, K. & Munro, D. (2022). Alternate histories: Synthetic large ensembles of sea-air CO2 flux. Global Biogeochemical Cycles, 36: e2021GB007174. doi:10.1029/2021GB007174
- Olivier, L., Boutin, J., Reverdin, G., Lefevre, N., Landschützer, P., Speich, S., Karstensen, J., Labaste, M., Noisel, C., Ritschel, M., Steinhoff, T. & Wanninkhof, R. (2022). Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO2 than expected. Biogeosciences, 19, 2969-2988. doi:10.5194/bg-19-2969-2022 [ Fulltext] [ Fulltext]
- Ostle, C., Landschützer, P., Edwards, M., Johnson, M., Schmidtko, S., Schuster, U., Watson, A. & Robinson, C. (2022). Multidecadal changes in biology influence the variability of the North Atlantic carbon sink. Environmental Research Letters, 17: 114056. doi:10.1088/1748-9326/ac9ecf [ Fulltext]
- Becker, M., Olsen, A., Landschützer, P., Omar, A., Rehder, G., Rödenbeck, C. & Skjelvan, I. (2021). The northern European shelf as an increasing net sink for CO2. Biogeosciences, 18, 1127-1147. doi:10.5194/bg-18-1127-2021 [ Fulltext] [ Fulltext]
- Fay, A., Gregor, L., Landschützer, P., McKinley, G., Gruber, N., Gehlen, M., Iida, Y., Laruelle, G., Rödenbeck, C. & Zeng, J. (2021). SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach. Earth System Science Data, 13, 4693-4710. doi:10.5194/essd-13-4693-2021 [ Fulltext]
- Gloege, L., McKinley, G., Landschuetzer, P., Fay, A., Froelicher, T., Fyfe, J., Ilyina, T., Jones, S., Lovenduski, N., Rodgers, K., Schlunegger, S. & Takano, Y. (2021). Quantifying errors in observationally based estimates of ocean carbon sink variability. Global Biogeochemical Cycles, 35: e2020GB006788. doi:10.1029/2020GB006788 [ Fulltext]
- Johnson, G., Lurnpkin, R., Alin, S., Amaya, D., Baringer, M., Boyer, T., Brandt, P., Carter, B., Cetinic, I., Chambers, D., Cheng, L., Collins, A., Cosca, C., Domingues, R., Dong, S., Feely, R., Frajka-Williams, E., Franz, B., Gilson, J., Goni, G., Hamlington, B., Herrford, J., Hu, Z.-Z., Huang, B., Ishii, M., Jevrejeva, S., Kennedy, J., Kersale, M., Killick, R., Landschützer, P., Lankhorst, M., Leuliette, E., Locarnini, R., Lyman, J., Marra, J., Meinen, C., Merrifield, M., Mitchum, G., Moat, B., Nerem, R., Perez, R., Purkey, S., Reagan, J., Sanchez-Franks, A., Scannell, H., Schmid, C., Scott, J., Siegel, D., Smeed, D., Stackhouse, P., Sweet, W., Thompson, P., Trinanes, J., Volkov, D., Wanninkhof, R., Weller, R., Wen, C., Westberry, T., Widlansky, M., Wilber, A., Yu, L. & Zhang, H.-M. (2021). Global oceans. Bulletin of the American Meteorological Society, 102(State of the Climate in 2020), S143-S198. doi:10.1175/BAMS-D-21-0083.1 [ Fulltext]
- Stephan, C., Schnitt, S., Schulz, H., Bellenger, H., de Szoeke, S., Acquistapace, C., Baier , K., Dauhut, T., Laxenaire, R., Morfa Avalos, Y., Person, R., Meléndez, E., Bagheri, G., Böck, T., Daley, A., Güttler, J., Helfer, K., Los, S., Neuberger, A., Röttenbacher, J., Raeke, A., Ringel, M., Ritschel, M., Sadoulet, P., Schirmacher, I., Stolla, M., Wright, E., Charpentier, B., Doerenbecher, A., Wilson, R., Jansen, F., Kinne, S., Reverdin, G., Speich, S., Bony, S. & Stevens, B. (2021). Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign. Earth System Science Data, 18, 491-514. doi:10.5194/essd-13-491-2021 [ Fulltext]
- Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P., Speich, S., Acquistapace, C., Aemisegger, F., Albright, A., Bellenger, H., Bodenschatz, E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delanoë, J., Denby, L., Ewald, F., Fildier, B., Forde, M., George, G., Gross, S., Hagen, M., Hausold, A., Heywood, K., Hirsch, L., Jacob, M., Jansen, F., Kinne, S., Klocke, D., Kölling, T., Konow, H., Lothon, M., Mohr, W., Naumann, A., Nuijens, L., Olivier, L., Pincus, R., Pöhlker, M., Reverdin, G., Roberts, G., Schnitt, S., Schulz, H., Siebesma, A., Stephan, C., Sullivan, P., Touzé-Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves, L., Arixi, S., Asmath, H., Bagheri, G., Baier , K., Bailey, A., Baranowski, D., Baron, A., Barrau, S., Barrett, P., Batier, F., Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E., Blossey, P., Bock, O., Böing, S., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K., Branellec, P., Branger, H., Brennek, M., Brewer, A., Brilouet, P.-E., Brügmann, B., Buehler, S., Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X., Cato, G., Charles, J., Chazette, P., Chen, Y., Chilinski, M., Choularton, T., Chuang, P., Clarke, S., Coe, H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers, Y., Daley, A., Damerell, G., Dauhut, T., Deneke, H., Desbios, J.-P., Dörner, S., Donner, S., Douet, V., Drushka, K., Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Etienne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero, L., Fix, A., Flamant, C., Flatau, P., Foltz, G., Forster, L., Furtuna, I., Gadian, A., Galewsky, J., Gallagher, M., Gallimore, P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop, J., Gouirand, I., Gourbeyre, C., de Graaf, D., de Groot, G., Grosz, R., Güttler, J., Gutleben, M., Hall, K., Harris, G., Helfer, K., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A., Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A., Kidane, A., Kirchner, U., Klingebiel, M., Körner, M., Kremper, L., Kretzschmar, J., Krüger, O., Kumala, W., Kurz, A., L'Hégaret, P., Labaste, M., Lachlan-Cope, T., Laing, A., Landschützer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Lavik, G., Laxenaire, R., Le Bihan, C., Leandro, M., Lefevre, N., Lena, M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell, O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Masson, S., Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., McGeary, W., McWilliams, J., Mech, M., Mehlmann, M., Meroni, A., Mieslinger, T., Minikin, A., Minnett, P., Möller, G., Morfa Avalos, Y., Muller, C., Musat, I., Napoli, A., Neuberger, A., Noisel, C., Noone, D., Nordsiek, F., Nowak, J., Oswald, L., Parker, D., Peck, C., Person, R., Philippi, M., Plueddemann, A., Pöhlker, C., Pörtge, V., Pöschl, U., Pologne, L., Posyniak, M., Prange, M., Meléndez, E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K., Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C., Rochetin, N., Röttenbacher, J., Rollo, C., Royer, H., Sadoulet, P., Saffin, L., Sandiford, S., Sandu, I., Schäfer, M., Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder, M., Schwarzenboeck, A., Sealy, A., Senff, C., Serikov, I., Shohan, S., Siddle, E., Smirnov, A., Späth, F., Spooner, B., Stolla, M., Szkółka, W., de Szoeke, S., Tarot, S., Tetoni, E., Thompson, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A., Villiger, L., von Arx, J., Wagner, T., Walther, A., Webber, B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V., Young, S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T. & Zöger, M. (2021). EUREC4A. Earth System Science Data, 13, 4067-4119. doi:10.5194/essd-13-4067-2021 [ Fulltext]
- Carroll, D., Menemenlis, D., Adkins, J., Bowman, K., Brix, H., Dutkiewicz, S., Fenty, I., Gierach, M., Hill, C., Jahn, O., Landschützer, P., Lauderdale, J., Liu, J., Manizza, M., Naviaux, J., Rödenbeck, C., Schimel, D., Van der Stocken, T. & Zhang, H. (2020). The ECCO‐Darwin data‐assimilative global ocean biogeochemistry model: Estimates of seasonal to multi‐decadal surface ocean pCO2 and air‐sea CO2 flux. Journal of Advances in Modeling Earth Systems, 12: e2019MS001888. doi:10.1029/2019MS001888 [ Fulltext]
- Friedlingstein, P., O'Sullivan, M., Jones, M., Andrew, R., Hauck, J., Olsen, A., Peters, G., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J., Ciais, P., Jackson, R., Alin, S., Aragão, L., Arneth, A., Arora, V., Bates, N., Becker, M., Benoit-Cattin, A., Bittig, H., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L., Evans, W., Florentie, L., Forster, P., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R., Ilyina, T., Jain, A., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D., Nabel, J., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A., Sutton, A., Tanhua, T., Tans, P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A., Wanninkhof, R., Watson, A., Willis, D., Wiltshire, A., Yuan, W., Yue, X. & Zaehle, S. (2020). Global carbon budget 2020. Earth System Science Data, 12, 3269-3340. doi:10.5194/essd-12-3269-2020 [ Fulltext] [ Fulltext]
- Hauck, J., Zeising, M., Le Quere, C., Gruber, N., Bakker, D., Bopp, L., Chau, T., Guerses, O., Ilyina, T., Landschützer, P., Lenton, A., Resplandy, L., Roedenbeck, C., Schwinger, J. & Seferian, R. (2020). Consistency and challenges in the ocean carbon sink estimate for the global carbon budget. Frontiers in Marine Science, 7: 571720. doi:10.3389/fmars.2020.571720 [ Fulltext]
- Keppler, L. (2020). Variability of the contemporary Southern Ocean carbon fluxes and storage. Phd Thesis, Hamburg: Universität Hamburg. doi:10.17617/2.3243301 [ Fulltext]
- Landschützer, P., Laruelle, G., Roobaert, A. & Regnier, P. (2020). A uniform pCO(2) climatology combining open and coastal oceans. Earth System Science Data, 12, 2537-2553. doi:10.5194/essd-12-2537-2020 [ Fulltext]
- Landschützer, P. & Keppler, L. (2020). Ein neuer Meilenstein in der Schließung des Ozean-Kohlenstoffbudgets. Jahrbuch / Max-Planck-Gesellschaft, 2020. [ Fulltext]
- Watson, A., Schuster, U., Shutler, J., Holding, T., Ashton, I., Landschützer, P., Woolf, D. & Goddijn-Murphy, L. (2020). Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nature Communications, 11: 4422. doi:10.1038/s41467-020-18203-3 [ Fulltext] [ Fulltext]
- Bushinsky, S., Landschützer, P., Rödenbeck, C., Gray, A., Baker, D., Mazloff, M., Resplandy, L., Johnson, K. & Sarmiento, J. (2019). Reassessing southern ocean air‐sea CO2 flux estimates with the addition of biogeochemical float observations. Global Biogeochemical Cycles, 33, 1370-1388. doi:10.1029/2019GB006176 [ Fulltext]
- Gruber, N., Landschützer, P. & Lovenduski, N. (2019). The variable southern ocean carbon sink. Annual Review of Marine Science, 11, 159-186. doi:10.1146/annurev-marine-121916-063407
- Keppler, L. & Landschützer, P. (2019). Regional wind variability modulates the Southern Ocean Carbon sink. Scientific Reports, 9: 7384. doi:10.1038/s41598-019-43826-y [ Fulltext] [ Fulltext]
- Landschützer, P., Ilyina, T. & Lovenduski, N. (2019). Detecting regional modes of variability in observation-based surface ocean pCO2. Geophysical Research Letters, 46, 2670-2679. doi:10.1029/2018GL081756 [ Fulltext]
- Lebehot, A., Halloran, P., Watson, A., McNeall, D., Ford, D., Landschützer, P., Lauvset, S. & Schuster, U. (2019). Reconciling observation and model trends in North Atlantic surface CO2. Global Biogeochemical Cycles, 1204-1222. doi:10.1029/2019GB006186 [ Fulltext]
- Li, H., Ilyina, T., Müller, W. & Landschützer, P. (2019). Predicting the variable ocean carbon sink. Science Advances, 5: eaav6471. doi:10.1126/sciadv.aav6471 [ Fulltext] [ Fulltext]
- Roobaert, A., Laruelle, G., Landschützer, P., Gruber, N., Chou, L. & Regnier, P. (2019). The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Global Biogeochemical Cycles, 33, 1693-1714. doi:10.1029/2019GB006239 [ Fulltext]
- Feely, R., Wanninkhof, R., Carter , B., Landschützer, P., Sutton, A. & Trinanes, J. (2018). Global ocean carbon cycle [in “State of the Climate in 2017”]. Bulletin of the American Meteorological Society, 99(Spec. Iss.), S96-S100. doi:10.1175/2018BAMSStateoftheClimate.1 [ Fulltext]
- Le Quéré, C., Andrew, R., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P., Korsbakken, J., Peters, G., Canadell, J., Arneth, A., Arora, V., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L., Ciais, P., Doney, S., Gkritzalis, T., Goll, D., Harris, I., Haverd, V., Hoffman, F., Hoppema, M., Houghton, R., Ilyina, T., Jain, A., Johannesen, T., Jones, C., Kato, E., Keeling, R., Goldewijk, K., Landschützer, P., Lefèvre, N., Lienert, S., Lombardozzi, D., Metzl, N., Munro, D., Nabel, J., Nakaoka, S.-I., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck , C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P., Tian, H., Tilbrook, B., Tubiello, F., van der Laan-Luijkx, I., van der Werf, G., Viovy, N., Walker, A., Wiltshire, A., Wright, R. & Zaehle, S. (2018). Global Carbon Budget 2018. Earth System Science Data, 10, 2141-2194. doi:10.5194/essd-2018-120 [ Fulltext]
Weitere Themen

Neuer Einblick in die saisonale Dynamik von Kohlenstoff im globalen Ozean
Forschende am Max-Planck-Institut für Meteorologie (MPI-M) und Kolleg*innen haben einen Ansatz für maschinelles Lernen angewandt, um eine monatliche…