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Abstract A simple two-box model of the hemispheric
thermohaline circulation (THC) is considered. Themodel
parameterizes fluctuations in the freshwater forcing by a
stochastic process. The dependence of the power spectral
density and the lifetime of quasistationary states of the
THC on the distance to the bifurcation point, where
the THC collapses, is calculated analytically. It is shown
that power spectral properties change as the system is
moved closer to the bifurcation point. These changes
allow an estimate of the distance to the bifurcation point.

Keywords Thermohaline circulation � Stochastic
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Bifurcation

1 Introduction

It is becoming increasingly evident that there are critical
thresholds in the Earth system, where the climate may
change dramatically (Scheffer et al. 2001; Smith et al.
2001). The exact positions of these thresholds are,
however, still unclear and it might be doubted whether
they can be determined with enough precision to give
concrete information on the threat of crossing the
threshold. Therefore, additional independent methods
for assessing the closeness of the system to these
thresholds are needed. These methods could contribute
to an early warning system for assessing the danger of
crossing a threshold and possibly provide the informa-
tion necessary for controlling the system.
One subsystem that displays such a threshold is the

North Atlantic thermohaline circulation (THC) (Clark

et al. 2002). Considering the system of the THC under
a global warming scenario, the circulation may collapse
if certain threshold values in northern Atlantic tem-
perature and salinity are exceeded. This system has
been thoroughly investigated using a whole range of
models, ranging from conceptual models (Stommel
1961; Cessi 1994; Rahmstorf 1996; Scott et al. 1999;
Titz et al. 2002) over models of intermediate com-
plexity (Stocker and Schmittner 1997; Rahmstorf and
Ganopolski 1999a) to highly complex general circula-
tion models (GCM) (Manabe and Stouffer 1988;
Rahmstorf 1995; Schiller et al. 1997). While most of
these investigations agree with respect to the fact that
there is a threshold where the circulation breaks down,
the exact value of this threshold in the climate system
has not yet been determined. Currently, it seems
questionable whether the exact position of the thresh-
old will be determined within the near future, as the
disagreement on overturning strength and sensitivity to
freshwater fluxes is still quite large between different
GCMs. In addition, it has not been possible to accu-
rately measure the present overturning strength of the
THC in the real climate system so far.
Simple box models have shown a remarkable ability

to capture important aspects of the behavior of the THC
manifested in GCM experiments. So far, most investi-
gations have concentrated either on the deterministic
behavior of the THC or on the stochastic properties.
Deterministic models have mainly been used to investi-
gate the bifurcations and attractors of the models
(Stommel 1961; Rahmstorf 1996; Scott et al. 1999; Titz
et al. 2002), whereas the work with stochastic models has
concentrated on the spectrum and on the stationary
distribution (Stommel and Yound 1993; Cessi 1994;
Bryan and Hansen 1995). Combining the two points of
view, Timmermann, Lohmann, and Monahan have
investigated how the stationary distribution changes as a
function of the bifurcation parameter (Timmermann
and Lohmann 2000; Monahan 2002; Monahan et al.
2002). What has not been investigated so far is the
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dependence of the power spectrum on the bifurcation
parameter.
The concept of stochastic climate models goes back

to a paper by Hasselmann (Hasselmann 1976). He ob-
served that there are many fast processes (e.g. weather)
within the climate system. These processes may affect the
long-term development of the system, so that they can-
not be omitted from an assessment. On the other hand,
these processes cannot be incorporated into compre-
hensive models due to resolution, computation, and
conceptual restraints. Therefore, Hasselmann proposed
that the influence of the fast processes on climate could
be modeled as a stochastic forcing to the system.
With respect to bifurcations, the influence of fluctua-

tions becomes even more important, as fluctuations may
increase in the vicinity of bifurcation points, eventually
leading to critical fluctuations (Haken 1980; Sornette
2000). This might induce a switch in the system even be-
fore reaching the bifurcation itself (Monahan 2002).
Within the THC system, the freshwater flux serves as

the bifurcation parameter. The freshwater flux is com-
posed of a multitude of components, including precipi-
tation and wind-driven transports among others. These
processes are subject to short-term processes and fluc-
tuations. We therefore might have the situation of
critical fluctuations.
The aim of this investigation is to see whether the

system’s response to fluctuations can be used as an in-
dicator for the proximity of the system to the bifurcation
point, and to determine whether this might yield addi-
tional information compared to purely deterministic
methods. Potential applications of this method could
span a large range, ranging from the THC itself over
other climatic processes to ecosystem dynamics.
The structure of the paper is as follows: in Section 2

we will describe the model used in this investigation and
estimate the variability of North Atlantic freshwater
fluxes. In Section 3 we will investigate the dependence of
the power spectral density on the bifurcation parameter.
Section 4 will concentrate on the dependence of the
probability density on the bifurcation parameter. In
Section 5 we will analyze the stability of the present-day
THC and its dependence on bifurcation parameter and
noise strength, while we will try to extend our findings to
more comprehensive models in Section 6. The paper will
finish with summary and conclusions in Section 7.

2 Model description and behavior

2.1 The Stommel model

The Stommel model (Stommel 1961) is a well-known
nonlinear conceptual model of the thermohaline circu-
lation. It is a hemispheric two-box model consisting of
interconnected boxes of temperature Ti and salinity Si
representing the North Atlantic at low and high lati-
tudes. The model calculates the circulation strength in a
channel connecting the two boxes, as well as the changes

in salinity and temperature resulting through advective
transport between the boxes. The circulation is propor-
tional to the density difference between the boxes.
In the case of a positive freshwater flux l, corre-

sponding to an excess of precipitation over evaporation
in the high northern latitudes, the Stommel model has
two equilibrium states. First, there is a state with strong
positive overturning, where the flow is driven by thermal
gradients and braked by haline gradients. In addition,
there is a second state with weak negative overturning,
where the flow is driven by haline gradients.
If the system is in the thermally driven state with pos-

itive overturning, an increase in themean freshwater fluxl
leads to a decrease in circulation strength, until a critical
freshwater flux lc is reached, where the circulation breaks
down in a saddle-node bifurcation and the system
switches to the haline-driven equilibrium solution. A
subsequent reduction of the freshwater flux l does not
result in an instantaneous return to the positive over-
turning solution, but the system showshysteresis behavior
and stays on the haline branch at first (Monahan 2002).

2.2 Model reduction

We modify the model by adding a stochastic freshwater
flux to it. In order to allow an analytical treatment, we
reduce the system to one dimension. We will leave out
the details of the model formulation and the model
reduction, but refer the reader to Monahan (2000), as we
are using a model formulation that is nearly identical to
his. The only difference is that his model also contains a
red-noise term affecting the advective transport which
we left out.
If we assume that the temperature relaxation time scale

s is very short, temperature relaxation occurs instantly,
constraining the nondimensional temperature gradient x
to x ¼ 1 if one considers the long time scales only. Under
this condition, the behavior of the system on short time
scales may be of minor importance for the long-term
evolution of the slow variables. In this case, variables can
be separated, ‘‘slaving’’ the fast variables to the slow
variables. By this ‘adiabatic elimination’, we reduce the
dimensionality of the system to one. Independent of the
adiabatic reduction, the qualitative properties of the sys-
tem, namely the saddle-node bifurcation and the hyster-
esis behavior, are retained in the reduced system. We
therefore consider the one-dimensional stochastic differ-
ential equation (SDE) in the (nondimensional) salinity
gradient y:

dy ¼ ð� 1� yj jy þ lÞ dt þ r dW : ð1Þ
In this equation y is the nondimensional salinity gradient
between the boxes, l is the nondimensional freshwater
flux, ð1� yÞ is the (nondimensional) overturning, and
r dW is a Wiener process (Gardiner 1994) with ampli-
tude r. The advective salinity transport � 1� yj jy bal-
ances the freshwater flux l. In the nondimensional
system, one nondimensional time unit corresponds to
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1.66a (Monahan 2002). Therefore, all plots showing
times or frequencies can essentially be read in years.
In the case of positive overturning [ð1� yÞ >

0, y < 1], Eq. (1) transforms to

dy ¼ ðy2 � y þ lÞdt þ r dW ; ð2Þ
which has the deterministic steady-state solutions

y0;1 ¼
1

2
	

ffiffiffiffiffiffiffiffiffiffiffi
1

4
� l

r
; ð3Þ

with y1 an unstable and y0 ¼ 1=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4� l

p
a stable

fixed point.
Please note that the system described by Eq. (1) is

very similar to the one investigated in Cessi (1994). The
only difference is that Cessi parameterized the volume
transport by the square of the density difference and not
by the absolute value used here.
This SDE retains the relevant features of the Stommel

model. The system undergoes a saddle-node bifurcation
at the critical freshwater flux lc ¼ 0:25 and observes a
hysteresis behavior.
In the following model simulations, the model equa-

tions are integrated using an explicit Euler scheme
(Kloeden and Platen 1999) with a time step of 0.1
(nondimensional) ‘‘years’’. Initial experiments have
shown that the convergence properties do not improve
using smaller time steps.

2.3 Freshwater flux variability

The freshwater flux l is composed of a multitude of
factors. It contains all processes that influence the sa-
linity balance both in the equatorial Atlantic and in the
deepwater formation areas in the high northern lati-
tudes, with the exception of freshwater transport by the
THC. For the Labrador Sea, which is one of two
deepwater formation areas for the North Atlantic THC
(Warren 1981), Houghton and Visbeck estimate that the
major contributors to the freshwater balance of that
area are advective transport, sea-ice melting, continental
runoff, precipitation, and evaporation (Houghton and
Visbeck 2002). In addition to these, there is also wind-
driven transport, which could have an influence. The
freshwater flux l is composed of all of these factors,
minus the advective transport by the THC. This trans-
port is described explicitly by the Stommel model.
In order to assess the stochastic amplitude r, the

variance of the quantities composing l has to be esti-
mated. Estimates for these factors are difficult to obtain
and notoriously unreliable, and the variance of these
quantities is rarely even considered. Nonetheless, a few
estimates exist.
Walsh and Portis estimate from reanalysis data that

the standard deviation of annual averages of precipita-
tion P and evaporation E over the North Atlantic is
typically about 10–20% of the mean (Walsh and Portis
1999), while Houghton and Visbeck (2002) report that
interannual variations in the Labrador current are about

30% of the mean. In addition, there is an estimate of the
variability of the winter sea-ice concentration in the
Labrador Sea by Deser et al. (2002).
Apparently sea-ice anomalies are preceded by fresh-

water anomalies (Houghton and Visbeck 2002) and are
therefore correlated with these. It also seems plausible
that the interannual variations of P and E are not en-
tirely uncorrelated. If precipitation is anomalously large
one year, evaporation must also be anomalously large,
though not necessarily in the same location. With regard
to the advective transport we simply do not know how
representative the Labrador current is for the advective
freshwater transport within the entire North Atlantic
Basin.
The variance of such a sum of random processes is

the sum of the variances, if the processes are indepen-
dent and uncorrelated. If the processes are correlated, on
the other hand, the variance is much harder to quantify.
Therefore, it is only possible to give a minimum es-

timate for the stochastic amplitude r that drives the
ocean model by using the variability of precipitation P
as an indicator for the total variability, as the sea-ice
concentration and advective transport influences and
their correlations are very difficult to quantify.
Precipitation is usually assumed not to be uncorre-

lated white noise, but correlated red noise with an
autocorrelation e-folding time or decorrelation time
scale of a couple of days. In the model (Eq. 1) we have
substituted a white noise process for the red noise pro-
cess of precipitation. This is possible if the time scales of
the processes differ widely.
The noise amplitude r of an equivalent white noise

process driving the ocean model can be assessed by
comparing the variances of two simple linear models:
one that is driven by white noise and one that is driven
by red noise. The model driven by white noise r _WW has
variance varðyÞ ¼ r2=2d with d the inverse decorrelation
time scale of the model, whereas a model driven by a red
noise process z with variance varðzÞ ¼ k2=2a has the
variance varðy0Þ ¼ k2=½2adða þ dÞ� with a the inverse
decorrelation time scale of the red noise process z driving
the model, d the same as for the model driven by white
noise and k the amplitude of the white noise process
generating the red noise. From comparing these quan-
tities, it becomes obvious that r2 ¼ k2=½aða þ dÞ� and
therefore

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ða þ dÞ varðzÞ
s

:

Walsh and Portis report the standard deviation of
annual averages of precipitation. The variance of such
annual averages is, of course, much lower than the
variance of the original process. If we assume the orig-
inal process to be a piecewise constant time series, we
can estimate that the variance of a process �zz, where N
values have been averaged, is 1=N times the variance of
the original process z. Numerical experiments show that
this relationship holds well for the actual red noise
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process, if a segment length of twice the decorrelation
time scale s is assumed. This gives the relation
varðzÞ ¼ Nvarð�zzÞ for the variances, with N given by
N ¼ ðT=2sÞ ¼ aT=2 and T the averaging time.
Walsh and Portis estimate that the standard deviation

of precipitation and evaporation is about 10–20% of the
mean, corresponding to a variance varð�zzÞ ¼ ðblÞ2 with l
the mean freshwater flux and 0:1  b  0:2. If we as-
sume that rain has a decorrelation time scale s of about a
week, s ¼ 1=a � 1=50 yr and therefore a � 50 yr�1. The
inverse decorrelation time scale d of the ocean model can
be assessed from the linearized model presented in Sec-
tion 3. From Eq. (5) it is obvious that d ¼ 2

ffiffiffiffiffiffi
Dl

p
. As

0  Dl  0:25, we obtain 0  d  1. From these con-
siderations it follows that

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ða þ dÞ
a
2
T ðblÞ2

s
�

ffiffiffiffi
T

p
bl : ð4Þ

The maximum mean freshwater flux l in the reduced
Stommel model is l ¼ lc ¼ 0:25, giving a range from
r ¼ 2:5� 10�2 to r ¼ 5� 10�2 for the white noise am-
plitude r. We are therefore using a value of
r ¼ 2:5� 10�2 in all model simulations, unless another
value is specified explicitly.

3 Spectral changes at the bifurcation

In the deterministic case, it is possible to assess the dis-
tance to the bifurcation point on the basis of a measured
steady-state overturning q. This would require, however,
a perfect knowledge of q itself, as well as of all the model
parameters.

The stochastic model formulation, on the other hand,
reveals additional information because fluctuations are
included, the properties of which might be used for in-
dicating the distance to the bifurcation.
The spectrum of the system described by Eq. (2) can

be calculated analytically by using small noise expansion
(Gardiner 1994), essentially a linearization of the system
around the steady-state solution y0 ¼ h yðtÞi. The pre-
requisite for applying this approximation is that the
noise amplitude is sufficiently small, i.e. the influence of
the noise on the system behavior is small compared to
the deterministic influences.
The dynamics of the perturbation ~yy ¼ y � y0 is given

by the linearization of Eq. (2) around y0:

_~yy~yy ¼ ð2y0 � 1Þ~yy þ r _WW : ð5Þ
Equation (5) describes an Ornstein–Uhlenbeck Process.
The spectrum of this process is (Gardiner 1994):

SðxÞ ¼ r2

ð2y0 � 1Þ2 þ x2
: ð6Þ

Using the deterministic steady-state solution (Eq. 3) and
the distance Dl ¼ lc � l from the critical freshwater
flux lc, we obtain the dependence of the power spectral
density on the distance to the bifurcation point Dl:

Sðx;DlÞ ¼ r2

4Dl þ x2
: ð7Þ

Plotting the power spectral density calculated from the
time series of overturning data, a shift in spectral
properties due to the lurking bifurcation can be seen. It
is clearly visible from Fig. 1 that the spectrum changes
as the system is moved towards the bifurcation point.

Fig. 1 Spectral density estimate
of overturning in adiabatically
reduced model at distances to
bifurcation point Dl ¼ 0:2,
Dl ¼ 0:1, Dl ¼ 0:02, and corre-
sponding theoretical spectrum.
The frequency denoted on the
abscissa refers to nondimensional
time
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Far away from the bifurcation, one obtains a red spec-
trum with a cutoff frequency (the frequency where the
spectrum changes from a horizontal to a decreasing
shape) of approximately 10�1 (please note that fre-
quency is given in nondimensional units, as time is
nondimensional), while the magnitude of the spectrum
in the limit x ! 0 is approx. 8� 10�4. Close to the bi-
furcation, the cutoff frequency decreases to approxi-
mately 2� 10�2 at Dl ¼ 0:02, while the magnitude of
the spectrum in the limit x ! 0 increases by about an
order of magnitude to approximately 8� 10�3.
Obviously, the decorrelation time of the overturning

increases as one gets closer to the bifurcation, which
results in a change in cutoff frequency. This also implies
that the probability density function widens and that the
amplitude of fluctuations increases.
In Fig. 1 both measured and theoretically estimated

spectra of the overturning are shown for different dis-
tances to the bifurcation point Dl. Comparing these, it is
obvious that both measured and calculated spectrum
agree very closely.
By transforming the system to an Ornstein–Uhlen-

beck process, we are now capable of discussing the
mechanism leading to increased decorrelation times.
Physically, a larger mean freshwater flux l, corre-

sponding to a smaller distance to the bifurcation point
Dl, leads to an increase of the steady-state salinity gra-
dient y0 (see Eq. 3 for comparison). The increase in y0, in
turn, reduces the overturning q ¼ 1� y. Thus, the salt-
advection feedback (Rahmstorf et al. 1996) that stabi-
lizes the circulation is decreased in strength and small
deviations from the steady state change the advection
term in Eq. (1) very little, which leads to a very slow
relaxation to the steady state, thus allowing larger de-
viations from y0 and increasing the decorrelation time.
The power spectral density changes towards a ‘‘redder’’
spectrum. The magnitude of the spectrum in the limit
x ! 0 is inversely proportional to Dl, while the cutoff
frequency is proportional to the square root.

4 Probability density at the bifurcation

In order to gain further insight into the processes that take
place as the system approaches the bifurcation, it seems
valuable to also look into the changes of the probability
density function (PDF)of the process.While theLangevin
equation describes the temporal evolution of the system
itself as a diffusion process, the Fokker–Planck equation
describes the temporal evolution of the PDF. The Fok-
ker–Planck equation is equivalent to the Langevin SDE,
but it examines a different aspect of the system properties.
The Fokker–Planck equation,

o

ot
pðy; tÞ ¼ L̂LFPpðy; tÞ ; ð8Þ

is a partial differential equation describing the temporal
evolution of the probability density function p. L̂LFP is the
Fokker–Planck operator

L̂LFP ¼ � o

oy
½�rf ðyÞ� þ r2

2

o2

oy2
ð9Þ

with

f ðyÞ ¼ � y3

3
� y2

2
þ ly

� �
ð10Þ

being the potential for the adiabatically reduced sys-
tem (Eq. 2) in the vicinity of the potential minimum.
If the system is close to the steady-state solution y0, a
steady-state probability density function can be
calculated from the Fokker–Planck equation using
the potential solution (Gardiner 1994). This solution
is

pstatðyÞ ¼ N exp � 2

r2
f ðyÞ

� �
ð11Þ

with a normalization constant N and the potential (10).
An analogue to this system is the motion of an over-
damped particle in a potential well driven by a Brownian
forcing.
We assume that we can use this Ansatz as long as the

mean first exit time from the quasistationary state is
much longer than the time scales under consideration.
Strictly speaking, this method of solution is not appli-
cable because the system is not in a stationary state, but
only in a quasistationary state. As outlined in Section 5,
this assumption is valid as long as the system is not so
close to the bifurcation that a breakdown of the circu-
lation is inevitable.
The adiabatically reduced system (Eq. 2) corre-

sponds to the cubic potential (Eq. 10). Far away from
the bifurcation point, there is a well-defined potential
well. This is shown quite clearly in Fig. 2, where the
potential is plotted for Dl ¼ 0:2 and Dl ¼ 0. At
Dl ¼ 0:2 the PDF is tightly constrained within the
potential well. As the system moves closer to the
bifurcation, the potential difference Df ¼ f ðymaxÞ�
f ðyminÞ decreases, until it vanishes at the deterministic
bifurcation point lc. The PDF broadens and the
probability current across the local maximum f ðymaxÞ
increases.
The approach to a deterministic saddle-node bifur-

cation corresponds to a decrease in the potential differ-
ence between local minimum (corresponding to the
stable fixed point in the deterministic system) and local
maximum (corresponding to the unstable fixed point) of
the stochastic potential, until the potential difference is
zero at the deterministic bifurcation point. This flatten-
ing of the potential again reflects the vanishing restoring
force.
The linearized system (Eq. 5) corresponds to a par-

abolic potential. As the system approaches the bifurca-
tion, the parabola widens. Therefore, the change in the
spectrum can be explained by the widening of the par-
abolic potential, whereas the bifurcation itself is the
vanishing of the potential well.
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5 Stability of the THC

As the stochastic system approaches the bifurcation, its
stability decreases gradually. Even if the deterministic
bifurcation point has not been reached, there still is a
finite probability that the stochastic system will leave the
potential well and cross over to the haline-driven reverse
equilibrium circulation (Monahan 2002).
If the goal of detecting a lurking bifurcation is to

provide means for control, the bifurcation has to be
detected at a distance large enough from the bifurcation
point. Very close to the bifurcation, however, the system
will not be stable for very long. If this method is to make
sense, the circulation has to be stable long enough to
provide enough time for a meaningful measurement and
for moving the system away from the bifurcation again,
if it is too close to it. Therefore, it is necessary to assess
the dependence of the life time of the quasistationary
state of the THC on the bifurcation parameter. In ad-
dition, the stationary solution developed in the last
section does not make any sense if the quasistationary
system is not stable on the time scales under consider-
ation.
Within the framework of Fokker–Planck equation

and probability density, the life time of the quasista-
tionary state of the system can be described by the mean
first exit time from the potential well. In this section we
investigate how the mean first exit time depends on the
bifurcation parameter.
We consider some arbitrary area in configuration

space that contains the current maximum of the PDF.
The time when the system leaves this area for the first
time in the ensemble mean is the mean first exit time.

The mean first exit time from the potential well can be
calculated from the probability density p and the prob-
ability current S. The probability current can also be
understood as the probability divided by the mean first
exit time s. Therefore, the mean first exit time can be
calculated from

s ¼ p
S
¼ 2

r2

Zy2
y1

exp � 2

r2
f ðyÞ

� �
dy

ZA
ymin

exp
2

r2
f ðyÞ

� �
dy ;

ð12Þ
with f ðyÞ given by Eq. (10) (Risken 1996). The proba-
bility that the system is within the potential well is de-
termined by the first integral in Eq. (12), whereas the
inverse of the probability current from the potential
minimum at ymin to a point A outside the potential well is
estimated in the second integral. The integration
boundaries y1;2 are the boundaries of the area in con-
figuration space considered, while A is located outside
the potential well, somewhat larger than ymax. The in-
tegrals in Eq. (12) can be evaluated numerically.
If the potential difference Df ¼ f ðymaxÞ � f ðyminÞ is

much larger than the diffusion coefficient D ¼ r2=2, it is
also possible to obtain an analytical expression for the
mean first exit time by using Kramers’ formula (Risken
1996). Thus, we can gain an insight into the dependence
of the system’s stability on the distance from the bifur-
cation point. In our case, Kramers’ escape time is

sðr;DlÞ ¼ 2pð4DlÞ�
1
2 exp

1

3r2
ð4DlÞ

3
2

� �
: ð13Þ

The mean first exit time s grows more strongly than
exponentially with distance Dl, while it decreases with

Fig. 2 Potential and probability
density function at distance to
bifurcation point Dl ¼ 0:2 and
potential at the bifurcation point
Dl ¼ 0. The potentials have
been transformed by an additive
constant, so that they agree in y0.
Noise amplitude r was
r ¼ 2:5� 10�2. Potential mini-
mum f ðyminÞ and potential max-
imum f ðymaxÞ are marked with
circles. The PDF is obviously
constrained to an area where
potential and linearization still
agree
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rising noise variance r2. As one can see from Fig. 3, this
approximation is not valid very close to the bifurcation
point. In that case, the mean first exit time has to be
calculated numerically.
In order to compare these results with model simu-

lations, we have run an ensemble of 1000 model simu-
lations for every parameter combination considered.
The model Eq. (2) was integrated forward in time, and
the time when the system left the potential well was
considered the first exit time. The mean first exit time s is
given by the ensemble mean. These simulations were
performed at noise amplitudes of r ¼ 2:5� 10�2,
r ¼ 5� 10�2 and r ¼ 7:5� 10�2 with mean freshwater
fluxes l ranging from l ¼ 0:23 to l ¼ 0:25, corre-
sponding to Dl ¼ 0:02 and Dl ¼ 0.
The results obtained by numerical integration of

Eq. (12) and by model simulation were nearly identical.
Thus, we have plotted the mean first exit times obtained
by numerical integration and by the analytical approx-
imation in Fig. 3. From this figure it is obvious that the
analytical approximation is not applicable below
Dl ¼ 1:1� 102 at r ¼ 7:5� 10�2, while it is applicable
longer if the noise strength is lower. At larger distances
from the bifurcation point all methods give similar
answers.
When it comes to a discussion of the stability of the

THC, three time scales are of major interest. First, a
mean first exit time of 104 years or larger is relevant, as
that is the age of the Holocene, and the THC has been
relatively stable for that long, as can be inferred from
North Atlantic sediment data (Bond et al. 1997). The
distance to the bifurcation point corresponding to this
value of the mean first exit time is the minimum distance

possible for preindustrial conditions. The second rele-
vant time scale is the time needed to obtain a meaningful
measurement, while the third time scale is the time
needed to change the mean freshwater input l, if it is
determined that we are too close to a breakdown of the
THC. We estimate both the second and the third time
scale to be in the range of 102–103 years.
As an illustration of the information that can be

gained by using this Ansatz, we will estimate the dis-
tances to the bifurcation point that correspond to these
time scales. The analysis is, of course, not directly ap-
plicable to the real THC, but only to our simplified
model. For convenience, we now assume that a nondi-
mensional time step is equal to 1 year. The error intro-
duced by this simplification is small, as the actual length
of a time step is equal to 1.66 yr.
From Fig. 4, where the mean first exit time obtained

analytically is shown depending on the distance to the
bifurcation point Dl and on the noise amplitude r, we
can see that a mean first exit time of 104 years is reached
at Dl ¼ 0:07, corresponding to l ¼ 0:18, if the noise
standard deviation is comparatively high at r ¼ 7:5�
10�2. With r ¼ 5� 10�2 , this time is reached at Dl �
0:033, corresponding to l ¼ 0:217, while Dl � 0:013 at
r ¼ 2:5� 10�2.
A mean first exit time of 103 years is reached at

Dl ¼ 0:052 for r ¼ 7:5� 10�2. Therefore, the mean
freshwater flux l must be smaller than l ¼ 0:198, if we
want to be able to still measure and control the system.
This minimum permissible distance from the bifurcation
point decreases with smaller noise standard deviations
to Dl ¼ 0:023 at r ¼ 5� 10�2 and Dl ¼ 0:008 for
r ¼ 2:5� 10�2.

Fig. 3 Nondimensional mean
first exit times in the vicinity of
the bifurcation point, calculated
analytically and numerically for
three noise amplitudes r
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6 Beyond the simplified Stommel model

The change in the spectrum as the system is moved
closer to the saddle-node bifurcation is caused by a de-
crease in the strength of the advective feedback stabi-
lizing the THC. The advective feedback mechanism is
clearly not a property that is restricted to the simple box
model with which we have performed our experiments.
Therefore, it can be assumed that the changes in the
spectrum we have observed in a very simple box model
also occur in more comprehensive models, if the strength
of the advective feedback is reduced.
We have performed experiments similar to the ones

we described in Section 3 with two less simplified box
models. First, we have used the full Stommel model in-
cluding the temperature dynamics. For the exact model
formulation we refer the reader to Monahan (2002)
again. The upper panel of Fig. 5 shows the power
spectral density at different distances to the bifurcation
point Dl. Clearly, the power spectrum changes in a
manner similar to the simplified Stommel model as the
system gets closer to the bifurcation point.
In addition, we have performed these experiments with

a salinity-only version of an interhemispheric four-box
model of the THC (Titz et al. 2002), which is very similar
to the other well-known interhemispheric three- and four-
box models (Rooth 1982; Rahmstorf 1996; Rahmstorf
and Ganopolski 1999b; Scott et al. 1999; Titz et al. 2002).
These models describe an interhemispheric thermohaline
circulation, where the strength of the overturning is de-
pendent on the density gradient between the northern and
the southern box of the model, while the equatorial box,
which is much warmer than the polar boxes, has no

influence on the steady-state circulation, only on the dy-
namics of changes in circulation strength. In this type of
model a modified bifurcation behavior occurs: if there is
also a freshwater transport between the equatorial and the
northern box of the model that is above a certain thresh-
old, a Hopf bifurcation can occur (Titz et al. 2002). We
havemodified themodel by adding a stochastic freshwater
flux between the southern and the equatorial box of the
model, and we have performed experiments at different
mean freshwater fluxes, while we kept the freshwater
flux between the equatorial and the northern box below
the critical value for the Hopf bifurcation. The power
spectral density of the overturning is shown in the
lower part of Fig. 5. Again, there are distinct changes in
the power spectrum as the system approaches the bifur-
cation point.
Due to the lack of a suitable GCM, we have not yet

been able to test whether the effect we are describing also
occurs in full-scale GCMs, but GCM experiments have
shown that the overturning decreases with an increase of
the freshwater flux into the Atlantic Basin (Rahmstorf
1996). Decreased overturning implies decreased advec-
tion and therefore a decrease in the strength of the ad-
vective feedback.
Von Storch et al. have investigated the spectral

characteristics of the deep-ocean mass transport (von
Storch et al. 2000). They found no evidence against the
assumption that the THC has a red spectrum. In fact,
they found a power spectral density SðxÞ proportional
to x�2 in a frequency range from x ¼ 1=20 a�1 to
x ¼ 1=500 a�1. Longer time scales, where a red spectrum
would level off, could not be resolved due to the short
time series they had available.

Fig. 4 Nondimensional mean
first exit time from the potential
well for varying noise strength r
and distance to bifurcation point
Dl. Calculated from the analyt-
ical approximation where it is
valid. The mean first exit time is
given in nondimensional time
units. Large decorrelation times
also allow for the notion of
quasistationary states. For sensi-
ble parameter combinations, the
mean first exit times are always
much larger than decorrelation
times
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Knutti and Stocker have recently published results
from experiments with a model of intermediate com-
plexity (Knutti and Stocker 2002), where they report
that the variability of the overturning increases strongly
in the vicinity of the critical threshold where the THC
collapses. Tziperman has reported a similar increase in
variance close to the instability threshold in experiments
with a comprehensive 3-D ocean–atmosphere model
(Tziperman 2000). This increase in variability is also
predicted by our model.
While all of these characteristics are no conclusive

evidence that the spectral behavior we are describing
also occurs in GCMs and possibly in the real ocean, they
are consistent with the predictions by our model. We
therefore feel confident that our results can also be ap-
plied to GCMs and the real ocean.

7 Summary and conclusions

In this paper we have demonstrated how the spectral
properties and the probability density change as the
THC moves closer to the bifurcation point in a sto-
chastic modification of the Stommel model. As the sys-
tem approaches the bifurcation point, the spectrum
becomes ‘‘redder’’. The magnitude of the power spectral
density in the limit of zero frequency increases inversely
proportionally to the distance to the bifurcation point

Dl, while the cutoff frequency decreases proportionally
to the square root.
The mechanism described above is a generic property

of the advective feedback mechanism and the saddle-
node bifurcation, and is therefore independent of the
exact values of model parameters. The spectral charac-
teristics of the overturning in GCMs and the observed
increase in variance of the overturning close to the in-
stability threshold support the hypothesis that the
mechanism described above is also valid for more
comprehensive models, even though this would have to
be confirmed by experiments. The method presented
above could have a wide range of applicability to all
systems that contain a saddle-node bifurcation or a
feedback mechanism similar to the advective feedback of
the THC.
Rahmstorf estimated the distance to the bifurcation

point by fitting a deterministic four-box model to a GCM
hysteresis run of the THC (Rahmstorf 1996). A similar
approach could also be used to estimate the distance to the
bifurcation point in the real climate system, but it needs
the total overturning strength as an input, which is very
difficult tomeasure accurately.Any error inmeasuring the
total overturning would lead to an error in the estimate of
the distance to the bifurcation point, which makes an
additional independent approach desirable.
Rather than average values of total overturning, our

method requires the cutoff frequency of red overturning

Fig. 5 Power spectral density of
overturning at different mean
freshwater fluxes in less simpli-
fied box models. Upper panel
Full Stommel model, legend gives
distance to bifurcation point Dl,
frequency is nondimensional;
lower panel four-box model of
the interhemispheric THC, salin-
ity only, legend gives mean
freshwater flux F1

61



power spectra as an input, or, equivalently, the decor-
relation time in overturning time series. Therefore, the
proposed method allows an independent estimate of the
actual overturning, for a twofold reason.
First, the cutoff frequency only requires decorrelation

properties of overturning time series as an input, not the
total overturning, nor its total variability. Therefore, a
time series of a representative fraction of overturning
would be sufficient. In addition, fluctuations of salinity
and temperature differences show the same change in the
power spectral density as one finds close to the bifur-
cation. Therefore, the distance to the bifurcation point
could also be estimated by measuring the fluctuations in
either of these quantities.
Second, the proposed method adds information with

respect to another source of uncertainty: results ob-
tained with a simple model have to be transferred back
to the real world system. This transfer is problematical
with both methods, the one proposed here, and the
‘‘traditional’’ based on time-averaged, total overturning
estimates. The model parameters, which contain con-
siderable uncertainty, facilitate this transfer. From a
simple argument of units it becomes evident that our
proposed method is sensitive to an alternative set of
parameter uncertainties compared to the traditional
method. Our method rests on cutoff frequencies, and
hence decorrelation times of the overturning, and
thereby introduces the unit of ‘‘time’’ into the analysis,
whereas the ‘‘traditional’’ scheme relies on the total
measured overturning which is not in itself time-depen-
dent. Therefore, the focus of sensitivity in parameter
space is different for both methods.
What can be obtained from consecutive measure-

ments without a transformation back to the ‘‘real
world’’ is a prediction of a trend in the bifurcation pa-
rameter. This may be worth something already, even if
the absolute distance to the bifurcation point contains a
certain margin of error.
A problem appears if the actual threshold in the cli-

mate system is not determined by the advective processes
described by the Stommel model, but by a shutdown of
convection before the saddle-node bifurcation is reached.
If this is true, we can still estimate the distance from the
saddle-node bifurcation, but this will not be relevant for
the climate system. An estimate of the distance to the
point where convection shuts down may also be possible,
but this has not been investigated so far.
This paper illustrates that the variability of climatic

variables contains important information that is not
accessible if only averaged values are considered.
Therefore, a special emphasis could be put on the
analysis of variability and spectral properties in future
climate research.
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