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ABSTRACT

The aim of this thesis is to analyze the effect of nonhyperbolicity on a nonlinear

dynamical system. The focus lies on the distribution of periodic points on the

attractor. Since unstable periodic orbits are the basis for many calculations in

dynamical systems theory, their distribution is of special importance.

Two systems are regarded in this thesis: the nonhyperbolic Hénon map and the

hyperbolic dissipative baker map. For both systems, the unstable periodic or-

bits and other important quantities are calculated. Starting from a qualitative

approach, the presence and location of parts of the Hénon attractor without

periodic points and their dependence on the period length is discussed. Later,

quantitative tools for analyzing the distribution of periodic points on the attrac-

tor are developed and applied to the Hénon map.

Finally, an explanation for the observed gaps on the Hénon attractor is sketched,

connecting them to generating partitions and symbolic dynamics.

ZUSAMMENFASSUNG

Das Ziel dieser Arbeit ist es, die Auswirkungen der Nichthyperbolizität auf

ein dynamisches System zu untersuchen. Das Augenmerk liegt hierbei auf der

Verteilung der periodischen Punkte auf dem Attraktor. Da instabile periodische

Orbits die Grundlage für viele Berechnungen in der Theorie dynamischer Sys-

teme bilden, ist ihre Verteilung von besonderer Bedeutung.

In dieser Arbeit werden zwei Systeme betrachtet: die nichthyperbolische Hénon-

Abblidung sowie die hyperbolische und dissipative Bäcker-Abbildung. Für beide

Systeme werden die instabilen periodischen Orbits und andere wichtige Größen

berechnet. Mit einer qualitativen Herangehensweise wird die Existenz und Lage

von Bereichen des Hénon-Attraktors ohne periodische Punkte betrachtet, sowie

deren Abhängigkeit von der Periodenlänge. Anschließend werden quantitative

Methoden zur Analyse der Verteilung von periodischen Punkten auf dem At-

traktor entwickelt und auf die Hénon-Abbildung angewendet.

Schließlich wird eine Erklärung skizziert, die die beobachteten Lücken im Hénon-

Attraktor mit erzeugenden Partitionen und symbolischen Dynamiken verknüpft.
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1 Introduction

Complexity is a necessary feature of the living world. Neither life itself, nor the natural envi-

ronment would be possible without the complex system of a biological cell. And most of the

surrounding non-biological systems, such as the atmosphere, the oceans, cities or transport

networks, are highly complex as well. It is therefore of central importance to develop quanti�-

able concepts for describing these systems.

Dynamical systems theory is such an approach. A dynamical system is a set of equations that

can describe the state a system is in and handle its time evolution. They are used to model

the behaviour of known complex systems and are the testing ground for quantitative methods

that can later be applied to data from unknown systems.

Even very simple dynamical systems exhibit a phenomenon coined chaos: a very sensitive

dependence of the result on the initial conditions. This places a practical limit to the calcula-

bility of such systems, since the initial conditions can only be known up to a certain precision.

It is possible to model complex systems with a set of deterministic equations, thereby creating

a phenomenon called deterministic chaos [1]. The time evolution of any initial state can be

determined from the equations de�ning the system. Yet, since initially similar trajectories in

phase space often diverge into completely di�erent behaviour, it is necessary to develop tools

that are able to capture the general properties of a system independent of a concrete choice of

initial conditions.

A central quantity of a dynamical system is its natural measure, which assigns a probability

of occurrence to any point in phase space. For an ergodic1 system, this is equivalent to the

normalized spatial distribution of a very long trajectory [1, 2]. The natural measure allows to

determine the states, described by points in phase space, the system is most probable to be

in.

Other important quantities are generalized dimensions, describing the dimensionality of the

subset of phase space that is visited by the system in the long run, and entropies, which can

be regarded as giving a measure for the complexity of the system [3, 4]. A related concept is

that of Lyapunov exponents. They describe, for every dimension of the phase space, at which

rates a small segment of phase space expands or contracts [5, 6, 7].

All these quantities describe the system as a whole, without looking at a particular trajectory

with certain initial conditions. In practice, it can be quite hard to calculate these quantities,

1We will only treat ergodic systems in this thesis.
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since it is necessary to �nd a typical set of trajectories that are able to represent the general

properties of the dynamics and are invariant under coordinate change. The alternative ap-

proach is to use unstable periodic orbits [5, 8]. Periodic orbits are trajectories in phase space

whose dynamics repeat after a certain amount of iterations. For many systems, the set of

periodic points is countable, being �nite for a given period length of the orbit. To calculate

dimensions, measures or entropies, it is often su�cient to regard periodic orbits only up to

a certain period length, since the result converges relatively fast. Being able to work with a

�nite set of points that is nonetheless representative for the dynamics as a whole, makes this

method very e�ective.

Yet these results do not apply to all dynamical systems equally. They were proved for hy-

perbolic systems. [9], but most systems of interest are nonhyperbolic and thereby lack many

important properties, such as structural stability [10]. It has been investigated to what extent

the above stated results hold for nonuniformly hyperbolic systems [11, 12, 13, 14]. In [14],

for example, it is shown that the natural measure can be approximated by periodic orbits for

nonhyperbolic systems. But there are phenomena emerging in nonhyperbolic systems that in-

dicate a structural di�erence from hyperbolic systems, such as the deviation of periodic orbits

from the natural measure for low period lengths.

This thesis will tackle the e�ects of nonhyperbolicity on the distribution of periodic points.

After introducing the basic de�nitions and concepts in Chapter 2, Chapter 3 describes how

we calculate the periodic orbits of two representative systems, and the points of homoclinic

tangency, a central feature of the nonhyperbolic Hénon map. In Chapter 4 we will have a look

at the distribution of periodic orbits on the attractor, to discuss phenomena like gaps around

homoclinic tangencies and deviations from the natural measure. Based on these investigations,

an explanation for the origin of the observed gaps in the nonhyperbolic Hénon attractor is

presented. Finally, in Chapter 5 the results are summarized and a brief outlook on possible

directions for future investigations is given.



2 Fundamentals

2.1 Hyperbolicity and Homoclinic Tangencies

One of the most used concepts in the study of complex systems is local stability analysis.

The stability of a point x0
1 in phase space refers to whether, under successive iteration, points

in near vicinity approach x0 or diverge from it. To analyze the stability of a point, it is helpful

to linearize the dynamics, i.e. to perform a Taylor expansion. We will follow [15] and [2]

for this topic. This leads to the �rst important distinction, between continuous systems and

discrete systems, called maps.2 A continuous system is characterized by di�erential equations
dx
dt

= f(x), a map by an iteration rule xn = fn(x0) [16].

If we regard a map f , with xn+1 = f(xn), the linear expansion around x0 gives

f(x0 + δx) = f(x0) + J(x0) δx + · · · , (2.1)

where Jij = ∂fi
∂xj

is the Jacobian. Obviously, the Jacobian can only be calculated if the map

is di�erentiable. Equation 2.1 can transport a point in the local linearized neighborhood of

x0, the tangent space Tx0 . The eigenvectors of the Jacobian span di�erent subspaces, Es
x0
,

Eu
x0

and Ec
x0
, called stable, unstable and center subspace [2]. For a negative eigenvalue, the

corresponding eigenvector is in Es
x0
, for a positive eigenvalue in Eu

x0
and for an eigenvalue

λi = 0 it is in Eu.

We call a point x0 hyperbolic if its tangent space is spanned by the stable and the unstable

subspace, i.e. if Tx0 = Es
x0
⊕Eu

x0
[10]. A set Λ is called hyperbolic if every x0 ∈ Λ is hyperbolic.

This is the case if (i) the center subspace Ec is of dimension zero and (ii) all eigenvectors of

J(x) are linearly independent for all x ∈ Λ. In this thesis we will focus on the latter violation

of hyperbolicity, which leads to nonhyperbolic systems with homoclinic tangencies.

We can now de�ne the stable and unstable manifold.

The stable manifold W s of a point x is the set of points that approach x under forward

iteration, and it has the same dimensionality as the stable subspace around x: [2]

W s
x = {y | lim

n→∞
||fny − fnx|| = 0}, dim(W s

x) = dim(Es
x) (2.2)

1Throughout this thesis, bold letters will indicate vectors, and bold capital letters matrices.
2We will only regard maps in this thesis, since they are discrete and therefore easier to handle numerically.
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Analogously, the unstable manifold W u is the set of points that approach x under backwards

iteration: [10]

W u
x = {y | lim

n→−∞
||fny − fnx|| = 0}, dim(W u

x ) = dim(Eu
x) (2.3)

A point x, at which the stable manifold W s
x and the unstable manifold W u

x are tangential,

is called a homoclinic tangency (HT). Since the linear subspaces must in this case also be

tangential, they can no longer span the whole phase space and x is therefore not hyperbolic.

HTs are the manifestation of nonhyperbolicity that we are interested in in this thesis.

2.2 Periodic Orbits and Axiom A systems

Periodic orbits are a central concept in dynamical systems theory, since they are the basis

for calculating most characteristic quantities. An orbit is called periodic, if, after a certain

amount of iterations, it maps back to itself. Every member of a p-periodic orbit is a �xed

point of the p-th iterate of the map f :

fpx = x (2.4)

The solutions to equation 2.4 are �nite for a �xed period length p, but p can be chosen

arbitrarily large, which leads to an in�nite number of periodic orbits. In practice, periodic

orbits can only be calculated up to a certain period length P . One can therefore work with a

�nite set of periodic orbits of di�erent lengths p ≤ P .

An important distinction is that between conservative and dissipative systems. A conservative

system is characterized by the conservation of energy, which translates into a conservation

of phase space volume. A dissipative system has a shrinking phase space volume. Mostly,

this leads to the presence of an attracting set, where most trajectories wander to, called an

attractor [2]. It is a nonwandering set for a dissipative system, into which every point inside a

bigger set, the basin of attraction, is eventually mapped. A subset of the phase space is called

a nonwandering set, if it is the smallest possible set whose points are exclusively mapped back

into the set itself. Consequently, whenever a point lies in the nonwandering set, it will stay

inside it for any number of iterations.

An attractor can consist of a point, of a set of points or even be a fractal set. The latter is

called a strange attractor. If every point of the attractor is hyperbolic, then it is a hyperbolic

attractor. If there are points violating the hyperbolicity, we call it a nonuniformly hyperbolic

attractor.

A special class of dyamical systems, introduced by Stephen Smale, are the Axiom A systems.

They are de�ned by the following properties [8]:

- The nonwandering set of the system is hyperbolic.
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- The set of periodic points of the system is dense in the nonwandering set.

If the nonwandering set is a hyperbolic attractor, it was actually proved that the second prop-

erty follows from the �rst [17]. In this case, the distribution of the periodic points approaches

the natural measure for increasing period length [8]. It is therefore interesting to investigate

whether these very convenient properties of hyperbolic attractors can be expected to be valid

for nonuniformly hyperbolic attractors, which are by de�nition not Axiom A.

2.3 Generating partitions and symbolic dynamics

An arbitrary initial condition of a system with a strange attractor will result in nonperiodic

chaotic behaviour [2]. One way of characterizing this speci�c orbit, is to indicate the initial

condition with high precision. Another is to determine, in which part of the phase space it lies

for every iteration. This is done with the help of generating partitions. A generating partition

(GP) is one that, together with all its images and preimages, subdivides the phase space

into arbitrarily �ne segments [18]. Generating partitions are essential for the calculation of

quantities such as the Kolmogorov-Sinai entropy [19, 6]. For many two-dimensional systems3,

binary generating partitions exist. This means that the phase space is divided into two parts

by a partition line, and every point can be coded with a 1 or a 0, depending on the part it

lies in. If we code a complete orbit with the respective partition element in which the iterated

points lie, we get to the concept of symbolic dynamics. The dynamics of an orbit is coded

with arbitrarily chosen symbols (in our case, since it is a binary partition, with 1 and 0). The

symbolic dynamics consists of as many symbols as the orbit is long. Therefore, a nonperiodic

orbit has a biin�nite symbolic dynamics, since it can be iterated in�nitely many times both

forwards and backwards. A p-periodic orbit has a symbolic dynamics which is periodic with

period p, for example a in�nite repitition of (000001) for period p = 6.

The concept of symbolic dynamics is very useful, since any orbit can be coded in a distinct way,

at least for smooth invertible systems [2]. No two di�erent orbits of an invertible system ever

map to the exact same point, so they can always be distinguished by their initial condition.

It is clear that a generating partition, dividing phase space into arbitrarily small segments,

can in principle determine the starting point with arbitrary precision. Therefore every orbit

has a unique symbolic dynamics. For periodic orbits, it is even �nite, and very useful for

calculations, as we will see in section 3.1.

3Including the two systems investigated in this thesis [18].
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2.4 Hénon map and baker map

To study the properties of nonhyperbolic maps, we will investigate two sytems, one that is

hyperbolic and one that is not. The two systems studied in this thesis are the dissipative

Hénon map (from now on just called Hénon map) and the dissipative baker map (from now

on called baker map). Both are nonlinear two-dimensional maps.

The Hénon map is given by: [20](
xn+1

yn+1

)
=

(
a+ byn − x2n

xn

)
(2.5)

It can be useful to reduce the map to a one-dimensional form by substituting yn = xn−1. This

gives

xn+1 = a+ bxn−1 − x2n. (2.6)

In this thesis, the two parameters will be the canonical choice [20]: a = 1.4, b = 0.3. With

this choice, the map has a strange attractor, as shown in Figure 2.1(a). The attractor has a

fractal structure, caused by the mechanism of `stretching and folding' [21, 20]. We note that

the Hénon map is invertible.

The baker map, as we de�ne it in this thesis, is given by:(
xn+1

yn+1

)
=

(
2 · xn
α · yn

)
+ Θ

(
xn −

1

2

)
·

(
−1
1
2

)
(2.7)

Θ(x) is the step function. The second term is nonzero only if xn ≥ 1
2
. The attractor of the

baker map is shown in Figure 2.1(c). It exhibits a fractal structure in the y coordinate, as

we can see from zooming in (Figure 2.1(d)). Since we want to compare the two systems as

well as possible, we choose the parameter α such that the Haussdor� dimension DB of both

attractors is equal. Following [1], for the baker map we get DB = 1 +Dy = 1 + ln 2
| lnα| . For more

details, see [22, 3]. The Haussdor� dimension of the Hénon map with canonical parameters is

DB(a = 1.4, b = 0.3) = 1.26 [1]. Therefore we set α to α = exp(− ln(2)
0.26

) ≈ 0.07.

The baker map is clearly hyperbolic, since it only contracts in y direction and the x values do

not depend on the y direction. Therefore, we have a weakly, but steadily expanding x direction

and a strongly contracting y direction, which are always orthogonal and span the whole phase

space.
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(a)
(b)

(c)
(d)

Figure 2.1: Attractors of the Hénon map in (a), zoomed in in (b) and of the baker map in

(c), zoomed in in (d). For a better visualization of the baker map, we used α = 0.4 in this

plot. A smaller α would further compress the attractor in the y direction.





3 Calculations

3.1 Unstable Periodic Orbits

In principle, all unstable periodic orbits (UPOs) can be calculated. But the di�culty strongly

depends on the map. For the baker map it is easy and computationally cheap, since it can

be reduced to linear equations. For the Hénon map, Biham and Wenzel suggested an al-

gorithm that allows the calculation of all UPOs of a certain period p [23]. They found a

Hamiltonian, whose Euler-Lagrange equations are exactly the Hénon map. In this setting,

extremum con�gurations of the Hamiltonian correspond to periodic orbits of the Hénon map,

when applying periodic boundary conditions. Speci�cally, for period p and a set of p variables

x(t) = x1(t), . . . , xp(t) with xp+1 = x1, the following di�erential equations are solved: [11]

dxn/dt = snfn(x) (3.1)

where sn are constant factors and

fn(x) = xn+1 − a− bxn−1 + x2n. (3.2)

The time t is an arti�cial coordinate that is introduced to lead the system to an extremum

con�guration. If there is a solution to the system of di�erential equations 3.1, then for big

times t the state coordinate x will be constant and, since sn are constant as well, fn(x) will

be zero. It is easy to see in 3.2 that this case corresponds to a solution of the Hénon map.

Biham and Wenzel showed that it is su�cient to choose the constant factors as sn = ±1 [24].

They claimed that {sn} gives a symbolic dynamics of the periodic orbit. For the canonical

coordinates of the Hénon map this was veri�ed in [11]. This results in a maximum of 2p

solutions for a periodic orbit of length p. Actually, the number is lower than that, since not

all binary sequences correspond to a solution.

One has to take into account that sometimes di�erent binary sequences {sn} can lead to the

same orbit. This is the case for repititions and for cyclic permutations. The sequence (100100)1

is just a double run through the sequence (100) and can be discarded. All its information is

contained in the shorter sequence. Since for a periodic orbit the starting point is irrelevant,

(100010) is equivalent to (010001) and only one of each class of possible cyclic permutations

1sn = ±1 can be coded by any two signs. Binary coding with 1 and 0 is convenient.



10 3.1 Unstable Periodic Orbits

has to be regarded.

After having calculated the periodic orbits of the Hénon map up to a certain period length

P = 21, one can check the result by calculating the topological entropy. The topological

entropy can be understood as a measure for complexity of the regarded system. It measures,

by which exponent the number of distinguishable orbits grows with the orbit length. It can

be estimated on the basis of UPOs (see [11]) by

k = lim
p→∞

kp with kp =
1

p
ln(N(p)− 1), (3.3)

where p is the period length and N(p) the amount of periodic points at period length p. The

kp for the calculated period lenghts can be seen in Figure 3.1. We see that they converge to a

value around the previously calculated k = 0.465 [11]. Although this result only accounts for

the amount of calculated points and not for the correctness of their coordinates, it is a strong

indicator that the Biham-Wenzel algorithm was implemented correctly.

2 4 6 8 10 12 14 16 18 20
period p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

k p

Figure 3.1: Topological entropy kp of the Hénon map for different period lengths p.

Calculating the UPOs of the baker map is easy, since the x coordinate does not depend on the

y coordinate. Therefore the periodic orbits of the x direction can be calculated �rst. Again, we
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introduce symbolic dynamics. We can use the same binary sequences as for the Hénon map,

with cyclic permutations and repetitions of lower-dimensional sequences excluded. Then, for

the x coordinate, in order to get the periodic orbits corresponding to a symbol sequence {sn},
we need to calculate

x1

x2
...

xp

 =


0 0 · · · 2

2 0
. . . 0

0
. . . . . .

...
...

. . . 2 0

 ·


x1

x2
...

xp

−


s1

s2
...

sp

 , (3.4)

where sn are the symbols of the binary sequence, when using 0 for xn−1 <
1
2
and 1 for xn−1 ≥ 1

2
.

It is easy to verify that for a UPO of period p the x coordinates of the periodic points are

xi = i
2p−1 , with i ∈ {0, . . . , 2p − 1}.

To calculate the y coordinates, we apply the same procedure and need to calculate


y1

y2
...

yp

 =


0 0 · · · α

α 0
. . . 0

0
. . . . . .

...
...

. . . α 0

 ·


y1

y2
...

yp

+
1

2
·


s1

s2
...

sp

 , (3.5)

The x and y trajectories calculated for the same symbol sequence, as both coordinates only

depend on the previous x coordinate, together give the trajectory (xn, yn) of a UPO. We note

that, in contrast to the Hénon map, every symbol sequence yields an existing orbit, since the

linear equations to be solved all have existing solutions.
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3.2 Stable and Unstable Manifolds

The stable and the unstable manifold at x0 can be approximated locally by calculating the

direction with the strongest expansion and that with the strongest contraction.

We �rst compute an iterate of the Hénon map of length I = 105 and save the coordinates of

the points. Starting with an arbitrary vector vu
0 of norm ||vu

0 || = 1, we calculate iteratively

vu
i+1 =

J(xi+1) · vu
i

||J(xi+1) · vu
i ||
, (3.6)

with xi being the points of the previously calculated chaotic orbit. As in equation 2.1, the

Jacobian bends the vector into the direction with the strongest expansion. The other directions

are suppressed by the normalization. Since the Hénon attractor is ergodic, with a su�ciently

long orbit every part of it is covered. For every regarded point xi we obtain the direction with

the strongest expansion rate, given by the vector vu
i .

2

Inverting the Jacobian, we can compute the stable manifold on the attractor by performing

the same calculation backwards, starting from xI .

vs
i−1 =

J−1(xi−1) · vs
i

||J−1(xi−1) · vs
i ||
, (3.7)

Figure 3.2 shows both vector �elds. We see that the unstable manifold is always tangential to

the attractor and the stable manifold is mostly normal to the attractor. There are however

regions in phase space in which the stable manifold is also tangential to it, and thereby also

tangential to the unstable manifold. These are the regions of homoclinic tangencies (HTs),

which are of great importance to this work, since they determine the nonhyperbolicity of the

Hénon map.

3.3 Homoclinic Tangencies

We calculate the HTs by comparing the stable and the unstable vector for every regarded point

xi on the attractor. If they are su�ciently parallel, i.e. if their dot product surpasses a certain

threshold γ close to 1 (since all vectors are normalized), we call the point a HT.

vu
i · vs

i ≥ γ =⇒ xi is located near a HT. (3.8)

In practice, we choose γ = 0.9999. The result for these parameters is shown in Figure 3.2. The

four HTs around the x axis, with y values close to 0, are called primary homoclinic tangencies

(PHTs) [18]. In principle, there is an in�nite amount of HTs, since every image and every

2Since we start with an arbitrary vector vu
0 , we discard the first 20 iterations, so that the components normal

to the strongest expansion direction get sufficiently suppressed.
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1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Figure 3.2: Unstable manifold (red), Stable manifold (blue) and HTs (green). Only every

50th of the calculated values is plotted, for better visualization. The arrows are scaled down

from unity for the same reason.

preimage of a HT is again a HT. The primary HTs are de�nded by the fact that the sum of the

curvatures of both manifolds is minimal [10]. Therefore, the PTHs have a bigger area in phase

space around them, for which both manifolds are nearly tangential and where subsequently

the e�ects of nonhyperblicity are relevant. This area is called the critical region. HTs where

the curvature of the manifolds is big (which applies for most HTs), have a very small critical

region and do not exhibit many e�ects of nonhyperbolicity. In practice, only the HTs with a

su�ciently big critical region are regarded and the rest of the attractor can be treated as if it

were hyperbolic [10].

In the following segment we will see how the previously calculated UPOs connect to the

presence of HTs on the attractor.





4 Effects of Nonhyperbolicity

The attractor of a disspiative map can be visualized by plotting a very long trajectory from

a starting point inside the basin of attraction. For the Hénon map and the baker map, the

respective attractors are shown in Figure 2.1. UPOs can be used to calculate the natural

measure of a hyperbolic system [2] and, as strong evidence suggests, also of a nonhyperbolic

system [14]. It is therefore a plausible guess that the distribution of UPOs of a nonhyperbolic

system converge towards the natural measure, as it is the case for hyperbolic systems [8].

For short period lengths, nonetheless, we observe two major indicators that the above stated

assumption is not actually valid: areas on the attractor with no periodic points at all and a

systematic di�erence between the large-scale distribution of periodic points with respect to

the natural measure.

Both phenomena will be investigated in this section.

4.1 Gaps around Homoclinic Tangencies

At several points on the Hénon attractor we observe regions which are void of periodic points.

We will call these regions gaps. As we can see in Figure 4.1, they are located around homo-

clinic tangencies. The �gure shows the primary generating partition, connecting the primary

HTs and the �rst three backiterates of the primary generating partition. The intersections

between these generating partitions (GPs) and the attractor mark the HTs with the biggest

critical regions [10]. The e�ects of nonhyperbolicity are expected to be strong in these areas.

Accordingly, we observe that the critical regions around the major HTs, crossed by the de-

picted GPs, exhibit the biggest gaps. We also observe that the HTs are always located in the

center of a gap, with a seemingly symmetric behaviour of the periodic points around it.

To investigate how the occurrence and size of the gaps depends on the period length, we plot

the UPOs for four di�erent p in Figure 4.2. We see that the gaps close for higher period

lengths. But the closing does not occur simultaneously in all HTs. Already for p = 16 two of

the PHTs do barely exhibit gaps around them and the gaps around the other two PHTs close

for di�erent p respectively.

To study the closing more quantitavely, we calculate the point density around the PHTs for

di�erent period lengths. We look at the amount of points located in di�erent distances from

the PHTs (see Figure 4.3), normalized with the amount of chaotic points in the same ring. The
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Figure 4.1: UPOs (blue), HTs (green) and attractor (yellow) together with the primary

generating partition and its first three backiterates (black) for p = 16.

chaotic orbit that we use for normalization is of length N(p), equal to the amount of periodic

points in period p. For every p, the density Dr depending on the radius r is calculated by

Dr =
# periodic points in Rr

# chaotic points in Rr

, (4.1)

where Rr is the ring with radius r.

For the two PHTs of Figure 4.3, the Dr are shown in Figure 4.4. We see that, generally,

higher period UPOs get closer to the HTs. Lower period orbits have no points at all in the

regarded areas around PHTs and the higher period orbits increasingly approach the HT, as in

Figure 4.4(d). Yet this process of approximating the HT, of closing the gaps as p increases, is

not monotonous. Sometimes, contrary to the general trend, periodic points from lower period

UPOs lie closer to the HTP than some higher period UPOs, as we can see in Figure 4.4(c)

for p = 16. Moreover, even high period UPOs with points in nearly every ring, have a density

much lower than 1, which means that the periodic point density is lower than that of the

chaotic trajectory used for normalization.

Still, since we have only UPO data up to a certain period length P = 21, it is conceivable that
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(a) (b)

(c) (d)

Figure 4.2: UPOs (blue), HTs (green) and attractor (yellow) for four different period

lengths.

for p→∞, the gaps close completely and reach the same distribution as that of a long chaotic

orbit, namely the natural measure. This hypothesis will be investigated further in section 4.2.

In order to determine whether the observed gaps are really a feature of nonhyperbolic systems,

we compare UPOs with an approximation of the natural measure in the hyperbolic baker map.

In Figure 4.5 we plotted the periodic points over the attractor for p = 12 and p = 16. The

whole attractor is covered by the UPOs, there are no apparent gaps. When randomly zooming

into the fractal structure of the attractor, we see that the periodic points are distributed

uniformly among the nonperiodic points. This is exactly what we expect, since we connected

the existence of gaps to HTs, which are not present in a hyperbolic map. A more quantitative

assessment of the relationship between UPOs and the attractor of the baker map is done in

the following section.
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Figure 4.3: Concentric rings to evaluate point density around two PHTs (green) for different

radii. UPOs (blue) and a chaotic orbit (orange) with the same total amount of points

4.2 Distribution of periodic points

From a broader perspective, it is interesting to ask whether UPOs have the same spatial

distribution as the natural measure and how this depends on the hyperbolicity of the map.

This question is investigated by covering the phase space with quadratic boxes. For every

box, the number of included periodic points is counted. As a comparison, a chaotic trajectory

with a length N(p) equal to the amount of points of period p is evaluated in the same way.

Additionally, we compute the natural measure by a long chaotic trajectory.1 With this data,

it is possible to compare the convergence of UPOs towards the natural measure with the

convergence of a random chaotic orbit.

Since the previously discussed gaps on the attractor seem to diminish for longer period lengths

of UPOs, a natural hypothesis is that they are a phenomenon only of short periodic orbits.

For longer orbits, the gaps could asymptotically close, such that the distribution of periodic

points would approximate the natural measure.

If this were the case, one would expect that both the chaotic and the periodic points approach

1The trajectory consitsts of 105 points, excluding the first 100 iterations.
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(a) (b)

(c) (d)

Figure 4.4: Density of periodic points Dr depending on radius r, which is calculated as the

norm between a regarded point p and a PHT.

(a) and (c) show the results for the PHT at (0.986, -0.009), (b) and (d) for the PHT at

(1.12, 0.028).

the natural measure for higher period lengths. This hypothesis is examined by calculating

the standard deviation of the di�erence between the amount of points per box for the two

cases. Concretely, we choose a box size which determines the amount M of boxes per axis (for

the Hénon attractor we choose a covering of
(
[-2, 2], [-2, 2]

)
with a box size of 0.08, which

gives a grid of 50×50 boxes). For every period, we obtain an M ×M matrix describing the

distribution of periodic points (A), chaotic points (B) and the natural measure (N). Both

A and B are compared to the natural measure by calculating the di�erence matrices DAN

and DBN. Since the amount of points per period N(p) scales exponentially and we want to

compare the results for di�erent p, the di�erence matrices are divided by the number of total
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(a) (b)

(c) (d)

Figure 4.5: UPOs (blue) and attractor (yellow) of the baker map for two different period

lengths.

points of this period.

DAN =
1

N(p)

(
A−N

)
, DBN =

1

N(p)

(
B−N

)
(4.2)

DAN andDBN now contain the di�erence of the amount of points for every box. By calculating

the standard deviation sX = std(DXN) for every value in DAN and DBN respectively, the

deviation of the periodic points from the natural measure can be compared with that of the

chaotic trajectory.

Figure 4.6(a) shows that for both maps the periodic and the chaotic trajectories di�er signif-

icantly in their standard deviation (STD) sX of their di�erence matrices with respect to the

natural measure. For the Hénon map, the STD of the chaotic orbit decreases fast, whereas

the STD of the UPOs seems to reach a plateau at higher period lenghts. The STD of the

chaotic baker orbits seems to reach a lower limit, which is approached by the chaotic Hénon
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Figure 4.6: Deviation of the periodic points from the natural measure, quantitatively in

(a) and qualitatively in (b).

orbits and, more slowly, by the periodic orbits of the baker map. Since the baker map has

more points per period lenghts (every possible binary sequence yields an existing orbit), it is

clear that the magnitude of the STD is smaller than in the Hénon case.

Dividing the causes of the deviations from the natural measure into statistic and systematic

factors, we conclude the existence of a systematic cause that prevents the periodic Hénon

points from approaching the natural measure. Although the behaviour of periodic and chaotic

points di�ers for the baker map as well, the di�erence is not as drastic as in the Hénon case

and seems to decline for higher period lengths2. We therefore suspect that the high deviation

for periodic points is an e�ect of the Hénon map being nonhyperbolic. It seems to be the case

that, in a nonhyperbolic system, the distribution of periodic points does only approach the

natural measure up to a certain point.

More precisely, a look at the spatial distribution of the di�erences makes clear that areas

around HTs still exhibit a lower density of periodic points than a chaotic trajectory. Fig-

ure 4.6(b) shows the di�erence values for every box at p = 19. Negative values correspond to

fewer periodic than chaotic points. The areas around HTs (e.g. the points where generating

partitions intersect the attractor) mostly lie in and around boxes with a low density of periodic

points. So, even if the apparent gaps get closed for higher period lengths, there does remain

2The data for the baker map is not as reliable as for the Hénon map, since the strong contraction in y
direction leads to an extremely high sentitivity on the initial conditions. Floating point calculations yield
significant numerical errors. We therefore work with the data type Decimal with 44 digits. Thereby we are
able to reproduce the expected attractor, but we cannot fully exclude further numerical artifacts for long
trajectories, such as round-off-induced periodicity.
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a quantitative di�erence in the spatial distribution between the natural measure and periodic

points3.

Having a broader look at the distribution of points on the nonhyperbolic Hénon attractor, it

is sensible to analyze the symbolic dynamics of orbits. This is equivalent to analyzing how

many points lie on which of the two binary partition elements. For the periodic points of

the Hénon map, this is easily done, since the constant factor sn used in the Biham-Wenzel

algorithm corresponds to the location of the point with respect to a generating partition (see

Figure 4.7(a) or [11]). It is therefore su�cient to calculate the amount of points coded with a

1 and a 0 respectively, named n1 and n0. Doing this separately for every period length, we see

in Figure 4.7(b) that the proportion of points coded with 1 approaches the value r = 0.279.

This ratio r is de�ned by

r =
n1

n1 + n0

, n1 + n0 = N(p), (4.3)
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(a) UPOs of p = 19 with generating par-
tition. Blue points correspond to sym-

bol 1, red points to 0 in the symbolic

dynamics.
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Figure 4.7: Separation of points based on their symbolic dynamics and distribution of

symbols for the periodic and nonperiodic case.

To get the distribution of the natural measure, we let a chaotic trajectory run for many

iterations and count how many points fall on which partition element respectively. If the

UPOs were to approximate the natural measure, one would expect the same result as for the

periodic points. Yet the resulting value is r = 0.327.4

3The amount of points at p = 19 is L = 18549. There are 291 non-empty boxes in phase space, which leads
to an average of 63.7 points per boxes. The fact that many boxes have differences of more than 30 points,
emphasizes the magnitude of the deviations.

4This value was calculated with 108 iterations.
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Figure 4.7(b) shows the ratios r for both the periodic and the chaotic points for di�erent

period lengths, always regarding the same amount of points per period. The ratio indicates

the spatial location of points on the attractor. It is evident that the distribution of points with

respect to generating partitions is systematically di�erent between UPOs and chaotic orbits.

As this imbalance must hold with respect to any possible generating partition, this means

particularly that points concentrate on the upper right half of the attractor (regarding the

primary generating partition and its �rst backiterate). Looking at Figure 4.6(b) we see that

this quadrant does indeed seem to exhibit a higher concentration of periodic points, marked

with green and blue colours.

We conclude that, given the constant imbalance of the macroscopic distribution of UPOs with

respect to the natural measure, they do not approach the natural measure for higher period

lengths. This systematic di�erence between UPOs and the natural measure is surprising, but

it could help to �nd an explanation for the origin and cause of the previously observed gaps.
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4.3 Origin of gaps in the Hénon attractor

We saw in section 4.1 that the observed gaps on the Hénon attractor form around points of

homoclinic tangencies. Having seen in section 4.2 that even for higher period lengths the areas

around HTs have a lower density of periodic points with respect to the natural measure, the

question arises, whether there is a mechanism driving UPOs away from HTs.

The claim of this thesis is that the formation as well as the closing of the gaps on the attractor

can be understood on the basis of symbolic dynamics and generating partitions.

Figure 4.8: Periodic points of period p ≤ 12 and the primary GP with its first 6 backiterates.

The UPOs of p = 7 are highlighted in colour and the HTs are marked in green.

There are four di�erent orbits of period seven, as depicted in Figure 4.8. Several aspects are

noticeable in this plot. For one, the four orbits are always symmetrically allocated around a

HT. Secondly, there are always two points on either side of the HT, but in varying combina-

tions. Apparently, all four orbits show a surprisingly similar trajectory in phase space. Not

only do they all lie around the same HTs, they also iterate from one HT to the next in the

same order. The di�erence between the four orbits is encoded in the fact, on which side of the

HT, i.e. in which partition element, the points lie.

This can be better understood when looking at the symbolic dynamics of the period seven

orbits, as shown in Table 4.1. A point is coded with a 1 if it lies in the lower and with a 0 if

it lies in the upper partition element (with respect to the primary partition line5). The four

5All the following explanations are equally valid with respect to any other of the seven partition lines. For the
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Table 4.1: Symbol sequences for the length p = 7 UPOs

symbol sequence colour in Figure 4.8

(0000001) red

(1000001) pink

(0000101) blue

(1000101) yellow

symbol sequences di�er only in two of the seven digits. The two digits where two sequences

are 1 and two are 0 represent the points around the primary HTs, since in both cases two

points lie above and two points lie below the partition line. The last digit, which is 1 for all

four orbits, represents the points around the HT at ≈ (0.0, -1.4), since all four points lie in

the lower partition element.

Figure 4.9: Periodic points of period p ≤ 12 and the primary GP with its first 5 backiterates.

The UPOs of p = 6 are highlighted in colour and the HTs are marked in green.

The mechanism responsible for the symmetry around HTs appears to be the following: Con-

sider two symbol sequences of length p di�ering in only one digit. This implies that they must

lie in the same partition element during all iterations except for one. Since generating parti-

vertical line, 1 would code the left side and 0 the right side. The others have a more complicated structure,
but the same properties.
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Table 4.2: Symbol sequences for the length p = 6 UPOs

symbol sequence colour in Figure 4.9

(000001) red

(000101) blue

tions are constructed through the connection of HTs6, and since all preimages of a generating

partition are again generating, the two orbits must be distinguishable with respect to any of

the p di�erent partitions. Therefore, for every iteration the two points have to be separated

by a generating partition and thus lie on di�erent sides of a HT. In fact, the Figures 4.8

and 4.9 both show, that p di�erent generating partitions together divide the phase space in

such a way that every periodic point of this period lies in a di�erent partition element. The

period six orbits of Figure 4.9 show how two points of di�erent orbits are always separated

by a generating partition and enclose a HT7 at every iteration, given that they have a similar

symbolic dynamics.

Comparing the period six with the period seven UPOs in Tables 4.2 and 4.1, it is striking

how similar the symbolic dynamics of the existing orbits are for both periods. The di�erence

for the orbits drawn in red and blue (Figure 4.8 and 4.9) consists in one added 0 only. The

resulting dynamics is similar, but not completely analogous. The HTs that are enclosed by

the pair of points show signi�cant di�erences, comparing period six and period seven orbits.

Figure 4.8 shows all periodic points up to period length p = 12. Looking closely, it is evident

that the period six and seven orbits are not a special case, but prime examples of a general

phenomenon. Around many of the HTs, the periodic points are distributed symmetrically to

both sides (see Figure 4.2).

This phenomenon allows a simple explanation for the origin of the gaps discussed in section 4.1.

The allowed symbolic sequences for UPOs of a given length p are similar. The symbol 0

dominates the symbolic dynamics. As we saw earlier in section 4.2, the abundance of 0

is nearly constant for all periods (see Figure 4.7). Almost three out of four symbols are a 0.

Together with the exclusion of cyclic permutations, this automatically leads to similar symbolic

dynamics and thereby to orbits having similar dynamics throughout phase space, while always

being separated by a generating partition and thus a HT. For longer period lengths p, the

phase space is subdivided into smaller cells by the primary partition and its p− 1 preimages.

Therefore, for higher period lengths, in order to still be separable, the points must lie closer

to each other and to the HT. This leads to the observed e�ect of the gaps closing for higher p.

Earlier we discussed the concept of critical regions around HTs and stated that those with the

6For more details see [25].
7Not all HTs are drawn in green in Figure 4.9. This is due to the chosen threshold value γ in 3.3. But even if
no green dot is drawn, the crossing of the attractor with a generating partition is equivalent to the presence
of a HT.
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biggest crititical regions are the primary HTs and their lowest iterates. In Figure 4.9 we see

that the partition elements containing the longest segments of the attractor lie next to these

HTs with the biggest critical regions. It is well visible that the partition elements around

(0, -1), (0, 1.3) or (1, 0) have a noticeably low density of periodic points. We conclude that

the regions around strong HTs, where thus the e�ect of the nonhyperbolicity is strong, have

neighbouring partition elements which enclose an especially big part of the attractor. This

explains why the regions around strong HTs exhibit a considerably lower density of UPOs with

respect to the natural measure. Given a partition element containing a big segment of the

attractor, the overall density of periodic points is smaller than in a narrow segment, containing

only a small part of the attractor. This hypothesis is supported by the fact that the boxes

with fewest periodic points in Figure 4.6(b) coincide with the biggest partition elements in

Figure 4.9, whereas the boxes with most periodic points are located in the upper right half of

phase space, where it is subdivided into particularly �ne segments.

Observing that, because of the parabolic shape of the higher iterate generating partitions, the

upper half of the attractor is generally divided into more segments than the lower half, the

question arises, whether this might actually be the cause for the abundance of periodic points

in this partition element. This hypothesis is worth to be examined in further research.

Periodic points of di�erent orbits are always separated by a generating partition, therefore

they always lie on di�erent sides of a homoclinic tangency: We conclude that the framework

of generating partitions facilitates such a concise formulation of the mechanism that can explain

the formation and the closing of the gaps on the Hénon attractor as well as the macroscopic

deviations of UPOs from the natural measure.





5 Summary and Outlook

To investigate the e�ects of nonhyperbolicity on the dynamics of two-dimensional dynamical

systems, we focused on the nonhyperbolic Hénon map and on the hyperbolic baker map. This

thesis is especially about the e�ects that the nonhyperbolicity has on unstable periodic orbits

and their distribution in phase space.

After brie�y introducing the theoretical foundations in Chapter 2, Chapter 3 was dedicated

to describe the numerical calculations. We calculated the UPOs for both systems, as well as

the points of homoclinic tangencies for the Hénon map. This data could then be used to start

the analysis of the periodic points on the attractor and investigate how the nonhyperbolicity

a�ects the location of periodic points.

We saw in Chapter 4 that, qualitatively, there is an interesting phenomenon occurring in the

nonhyperbolic Hénon map. Around the major HTs, there are regions with no periodic points

for low period lengths, and these gaps �ll up for higher period UPOs. We calculated the relative

density of periodic points with respect to nonperiodic points in di�erent distances from the

HTs for all period lengths. This con�rmed our observation, that points of higher period length

get increasingly closer to the HTs, thereby leading to the e�ect of the gaps closing. At the

same time, we saw that this process does not occur in a regular manner. The period length

at which the closing occurs and the speed of it is very variable. Some HTs even have outliers,

for which smaller period UPOs lie signi�cantly closer to the HTs than higher period UPOs.

We conclude that the e�ect of gaps closing for higher period lengths does exist, but it is not

an easy and smooth process of decreasing repulsion from the HTs, but the consequence of a

more systematic imbalance in the nonhyperbolic system.

By analyzing the general distribution of periodic points in phase space, we saw that there

is a signi�cant di�erence in location between UPOs and a long chaotic orbit approximating

the natural measure. There are regions with a substantially higher share of periodic points

and, around HTs, regions with fewer periodic points. Analyzing the di�erence between a

periodic and a nonperiodic orbit approaching the natural measure, we saw that the periodic

orbits retain a substantial deviation from the natural measure, which is not present in the

nonperiodic case and seems to be constant for all higher period lengths.

Additionally, we noted that the distribution of points with respect to generating partitions

di�ers between periodic and nonperiodic orbits. Both cases exhibit a rate between the two

partition elements which is nearly constant for all lengths, but signi�cantly di�erent.
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The results of this work clearly state that the nonhyperbolicity of a map with HTs leads to

many e�ects that are not present in the hyperbolic case, such as regions of the attractor with

almost no periodic points. We claim that the formation of these gaps can be understood with

the concepts of symbolic dynamics and generating partitions. An explanation is outlined,

which allows to see the gaps around HTs as a necessary consequence of the fact that periodic

orbits have to be separated by every possible generating partition. Combining this with the

similarity of the existing symbolic dynamics, we can understand the symmetric allocation of

periodic points around HTs and even the closing of the gaps for higher period lengths.

It is thus interesting to invest further research into the origin of the similar symbolic dynamics.

The imbalance with respect to generating partitions that we noted earlier, could indicate a

route for further investigation. To examine the connection between this imbalance and the

nonhyperbolicity of the dynamical system, it is necessary to analyze this distribution for more

hyperbolic and nonhyperbolic systems.

The generality of the proposed explanation for the formation of gaps on the Hénon attractor

could be checked by examining nonhyperbolic systems with a more balanced distribution of

points between the two elements of a generating partition. It is an open question if such a

system would still have UPOs with such similar symbolic dynamics. This would shed more

light on whether the symmetrical gaps around HTs are an e�ect restricted to the Hénon map

or whether it is a general feature of nonhyperbolic dynamical systems.
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