
manuscript submitted to Tellus A: Dynamic Meteorology and Oceanography

A theory of randomness1

Jin-Song von Storch1,2
2

1Max Planck Institute for Meteorology, Hamburg, Germany3

2Center for Earth System Research and Sustainability (CEN), University of Ham-4

burg, Germany5

jin-song.von.storch@mpimet.mpg.de6

Data Accessibility7

All data and subsequently the figures are generated by Matlab-scripts archived in a pub-8

lication repository.9

Ethics approval was not required10

–1–



manuscript submitted to Tellus A: Dynamic Meteorology and Oceanography

Abstract11

Consider a system described by a multi-dimensional state vector x. The evolution12

of x is governed by a set of equations in the form of dx/dt = F (x(t)). x is a compo-13

nent of x. F (x(t)), the differential forcing of x, is a deterministic function of x. The so-14

lution of such a system often exhibits randomness, where the solution at one time is in-15

dependent of the solution at another more distant time. This study investigates the mech-16

anism responsible for such randomness. We do so by exploring the integral forcing of x,17

GT (t) =
∫ t+T

t
F (x(t′))dt′, which links the solution at two distant times, t and t+ T .18

We show that, for a system in equilibrium, GT (t) can be expressed as GT (t) = cT+19

dTx(t)+fT (t), which consists of (apart from the constant cT ) a dissipating component20

dTx(t) with a negative dT and a fluctuating component fT (t). This expression aligns with21

the idea of the fluctuation-dissipation theorem that for a system in equilibrium, anything22

that generates fluctuations must also damp the fluctuations. We show further that for23

a sufficiently large value of T , GT (t) emerges as a unified forcing. This forcing has a dis-24

sipating component characterized by dT = −1 and a fluctuating component that re-25

sembles a white noise. The evolution of x from time t to time t+T , which is described26

by x(t+T ) = x(t)+GT (t) nominally, is then described by x(t+T ) = cT +fT (t). This27

evolution is random, since x(t+ T ) is independent of x(t). This evolution is also irre-28

versible, since the dissipating component of GT (t) cancels with x(t) little by little and29

eventually completely by the time when GT (t) emerges and generates x(t+T ). The uni-30

fied forcing results from interactions of x(t) with other components of x that are com-31

pleted during the forward integration over the time span [t, t+T ). It represents a forc-32

ing that cannot be included in the differential forcing F . In general, randomness and ir-33

reversibility are inherent features of a multi-dimensional physical system in equilibrium.34
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1 Introduction35

Many physical systems are governed by principles that can be expressed in terms

of differential equations. In the case of a system with a multi-dimensional state vector

x, the evolution of x is described by a set of differential equations, each taking the form:

dx

dt
= F (x(t)). (1)

x is a component of x, which is a function of time t. The differential forcing F (x(t)) is36

a deterministic function of x. F (x(t)) describes internal dynamics arising from interac-37

tions of x with other components of x under the influence of some external forcings. Ex-38

amples of systems governed by equations in form of Eq.(1) include a climate model de-39

scribing the atmosphere and the ocean, and a many-particle system describing the move-40

ments of Brownian particles suspended in a fluid. A common feature observed from these41

physical systems is the lack of serial correlations, where a solution at one time point is42

uncorrelated to the solution at another more distant time point. A solution that lacks43

serial correlation is commonly regarded as random. We identify this randomness as the44

subject of this study. Under this definition of randomness, movements of a Brownian par-45

ticle are random; weather patterns are random. Random features are also found in many46

other occasions. A prominent example in atmospheric sciences concerns time averages47

of meteorological variables. These averages display variability similar to that of the sam-48

ple mean of a random variable, leading to the concept known as “climate noise” (Leith,49

1973; Madden, 1976, 1981; Feldstein & Robinson, 1994; Feldstein, 2000). Despite evi-50

dent random behaviors found for classical physical systems, a theory of randomness is51

still missing.52

Instead, heuristic arguments are used to provide some explanations. Such arguments53

often associate randomness with uncertainties. Two types of uncertainties are consid-54

ered in this context. The first one arises from our inability to precisely track the evo-55

lution of each individual degree of freedom in a system that has an exceedingly large num-56

ber of degrees of freedom. Brownian motion serves as a typical example, as it is chal-57

lenging to formulate and to solve the complete set of equations that describe all inter-58

actions between fluid molecules and Brownian particles. The standard approach, com-59

monly used to deal with noise and fluctuations in physical systems (MacDonald, 1962),60

is to replace the original deterministic equations by ones that include stochastic forcing.61
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In case of Brownian motion, the original equations are replaced by Langevin-type equa-62

tions.63

Inspired by the statistical approach used for handling Brownian motion, Hassel-

mann proposed to describe climate variability using stochastic climate models (Hasselmann,

1976). These models are formulated for the slow components of x. In line with the sta-

tistical treatment of slow Brownian particles embedded in fast fluid molecules, a stochas-

tic climate model for a slow component x is written as

dx

dt
= F + ζ. (2)

F represents the slow dynamics of x and the averaged effect of the fast components of64

x on x, with (·) being an average over a time period longer than the timescale of the fast65

components but shorter than the timescale of x. ζ is a stochastic forcing used to describe66

the fluctuating effect arising from the fast components.67

Statistical approaches are efficient in construing different variance-generation mech-68

anisms. In case of Hasselmann’s stochastic climate model, a solution obtained by inte-69

grating Eq.(2) over time contains an integral of ζ over time, which is a random walk. The70

variance of a random walk increases with increasing time. In order to obtain a station-71

arily varying solution from Eq.(2), F must incorporate negative feedbacks (Hasselmann,72

1976). Thus, variations generated by a stochastic climate model result from the joint ef-73

fect of random-walk and negative feedbacks. Statistical approaches can also be accurate74

in describing random behaviors, if the stochastic forcing is carefully constructed to pos-75

sess specific properties. What statistical approaches do not explicitly address is the mech-76

anism responsible for the randomness in solutions of the considered system.77

The other type of uncertainty arises from our inability to specify the exact initial78

conditions from which the considered physical system starts to evolve with time. This79

problem, first described by Lorenz (1963) and well-known to the numerical weather fore-80

cast community, is one of the key aspects studied by the dynamical systems theory. There,81

the sensitivity to initial conditions is attributed to the chaos arising from non-linear dy-82

namics in a dynamical system. However, dynamical systems theory does not explicitly83

deal with randomness. It is unclear whether and to what extent chaotic solutions are ran-84

dom.85
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Quite the contrary, both the statistical approaches for handling high-dimensional86

systems and the investigation addressing the sensitivity to initial conditions implicitly87

assume that a physical system is fundamentally deterministic. The situation is under-88

standable, since the uncertainties, which represent randomness, do not originate from89

the deterministic dynamics. Instead, they result solely from external factors related to90

our inability in tracking the exact solution or in specifying precise initial conditions. This91

assumption about determinism is in obvious conflict with the randomness which we ex-92

perience from physical systems.93

One step towards resolving this conflict is made by the finding that the determin-

ism, as dictated by Eq. (1), breaks down under certain circumstances (von Storch, 2022).

Given Eq. (1), the spectra of x and F , Γx(ω) and ΓF (ω) where ω is frequency, are re-

lated to each other via

(2πω)2 Γx(ω) = ΓF (ω). (3)

Eq.(3) seems to confirm the determinism that variations of x at any one frequency must94

be generated by the variations of F at the same frequency. This however cannot be true95

for a solution whose spectrum Γx(ω) is continuous and approaches a finite and non-zero96

Γx(0) as ω → 0. Given a finite and non-zero Γx(0), Eq.(3) requires that ΓF (ω) must97

go to zero as ω → 0 so that ΓF (0) = 0. Thus, at frequency ω = 0, variations of x can98

not be generated by variations of F at this frequency.99

Before elaborating the meaning of the just mentioned low-frequency shape of Γx(ω),100

we point out that the determinism described by Eq.(3), which holds for all frequencies101

except zero frequency, is the norm that can become more prominent in case when F con-102

tains a time-varying external forcing. The present paper does not question and is not103

concerned with this determinism. To concentrate on internal dynamics, in which the ori-104

gin of randomness presumably lies, we will focus on physical systems that are not influ-105

enced by any time-varying external forcing. We cannot rule out the presence of constant106

external forcings, as variations in a physical system, no matter random or determinis-107

tic, necessitate external power support.108

Come back to the low-frequency shape of Γx(ω). That Γx(ω) is continuous and has109

finite and non-zero spectral value as ω → 0 describes nothing other than the manifes-110

tation of randomness in the solution of x. When defined as a Fourier cosine transform111

of auto-covariance function, the spectrum of a solution Γx(ω) only exists when the auto-112
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covariance function is absolutely summable. Upon existence, Γx(ω) must be continuous,113

since a cosine function is continuous and since a Fourier cosine transform is a sum of weighted114

cosine functions. The condition of absolute summability implies that the auto-covariance115

function must decay to zero with increasing time lag. It is precisely this decay of auto-116

covariance function that diminishes serial correlation and makes a solution to appear ran-117

dom. It is also this decay of auto-covariance function that prohibits the solution of x to118

be purely periodic. Auto-covariance function of a purely periodic solution, whose spec-119

trum consists of distinct spectral lines (Priestley, 1981), does not decay and retain its120

magnitude as time lag increases. It is still this decay of auto-covariance function, that121

allows Γx(0), the value of Γx(ω) at ω = 0, to be finite and non-zero. To see this, note122

that being a Fourier cosine transform of an auto-covariance function and since the value123

of a cosine function at the origin is one, Γx(0) is identical to the sum over the auto-covariance124

function at all time lags. Given that an auto-covariance function has a positive maxi-125

mum at lag zero, the sum of an auto-covariance function that decays with increasing time126

lag can lead to a Γx(0) that is not zero and finite. The same argument does not apply127

to ΓF (0), since auto-covariance function of F consists of differences of auto-covariance128

function of x because of Eq.(1) (von Storch, 2022).129

The finite and non-zero low-frequency shape of Γx(ω) can be inferred from spec-130

tra of variables that are apparently random. Fig.1 shows a collection of such spectra. To131

this end we note that while the deterministic influence of external forcing can be eas-132

ily controlled in a numerical experiment, achieving the same for the real climate is chal-133

lenging. The real climate is subjected to an external forcing, that has a non-zero mean134

and varies with time. The real climate can hence reveal not only random behaviors re-135

sulting from internal dynamics (via e.g. instability and turbulence), but also determin-136

istic behaviors resulting from external forcing. The latter includes for example long-term137

trends as responses to a slowly varying external forcing, and oscillations (e.g. annual cy-138

cle) as responses to a periodic external forcing. Thus, if we want to find from observa-139

tions spectra that are continuous and have finite and non-zero values at the lowest fre-140

quencies, we need to consider those variables whose variations are mainly generated by141

internal dynamics, with the influence of external forcings being negligibly small relative142

to that of these internal dynamics.143

Fig.1a) shows a spectrum of a component x of a dry atmospheric model (James &144

James, 1989), generated by model’s internal dynamics without influence of any time-varying145
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external forcing. Fig.1 b) shows spectra of sea level pressure derived from an atmospheric146

reanalysis (Deser et al., 2012) (black lines). Fig.1 d) and e) show spectra of current ki-147

netic energy derived from instrumental records (Ferrari & Wunsch, 2009). We assume148

that sea level pressure and ocean current are variables whose variations arise mainly from149

internal dynamics. All these spectra reveal finite and non-zero values at the lowest re-150

solved frequencies. Finally, Fig.1c) shows the spectra derived from the Lorenz model (Lorenz,151

1963), a model that does not contain any time-varying external forcing. In contrast to152

the other spectra depicted in Fig. 1, which are merely indicative owing to the limited153

duration of available observations and model solutions, the finite and non-zero low-frequency154

shape of Γx(ω) can now be demonstrated asymptotically by considering longer and longer155

Lorenz solutions (von Storch, 2022). We conclude that for a solution of a system gov-156

erned by a set of equations in form of Eq.(1), the apparent randomness is manifested in157

the solution’s spectrum that is continuous and has a finite and non-zero Γx(0). This spec-158

tral feature enforces the breakdown of determinism at zero frequency, including the as-159

sociated asymptotic behavior towards the breakdown at near-zero frequencies. The break-160

down suggests that Γx(0) has nothing to do with F , which is puzzling at first glance.161

On further reflection, we notice that the randomness in x and the wholly determin-162

istic nature of F do not pertain to the same thing. Randomness in x is only evident when163

a solution of x at time t is set in relation to the solution of x at a distant time t+T with164

T ̸= 0. A Brownian particle appears to move randomly because its velocity at time t165

seems to be independent of its velocity at time t+T , where T is a time interval larger166

than the reaction time of the human eye. F on the other hand tells us about the evo-167

lution tendency. Given F of the velocity of a Brownian particle at time t (which is a func-168

tion of the whole state vector x describing the positions and velocities of all involved par-169

ticles and molecules at time t), the time rate of change of the velocity of the considered170

particle is know exactly. Nothing is random. Thus, if we want to understand the mech-171

anism behind the randomness, we should shift to examining the integral forcing GT , a172

definite integral of F (x(t)) over a time span of length T that drives the evolution from173

x(t) to x(t+T ). Studying GT contrasts with the standard approaches that emphasize174

solely the differential forcing F .175

This paper explores the properties of GT (t). Following some preliminaries provided176

in Section 2, we show in Section 3 that GT consists of a fluctuating and a dissipating com-177

ponents, in accordance with the fluctuation-dissipation theorem of Callen and Welton178
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(1951). This theorem was introduced to the realm of climate research by Leith (1975)179

who showed how the theorem can be used to estimate climate responses to a changing180

external forcing. We show that there exists a threshold such that for T larger than this181

threshold, GT emerges as a unified forcing. Section 4 describes the impacts of these prop-182

erties of GT on the solution of x. Section 5 and 6 discuss two aspects that are essential183

for the dissipation represented by GT . Conclusions are provided in Section 7.184

2 Preliminaries185

2.1 Continuous solutions186

Consider a physical system, whose evolution is governed by a set of equations in

form of Eq.(1). Suppose that this set of equations has a solution and the solution at time

t is x(t). This solution is a function of continuous time, and referred to as a continuous

solution. For component x of x, its differential forcing F (t) = F (x(t)) is also a func-

tion of continuous time. Its integral forcing GT (t) at time t is defined as the definite in-

tegral

GT (t) =

∫ t+T

t

F (x(t′)) dt′, for T ∈ R∗, (4)

where R∗ represents the non-negative part of the real axis. Being an integral of F which187

is a function of the full state vector x, GT (t) can only be obtained after the whole sys-188

tem has been integrated over the interval [t, t+T ). For T = 0, GT (t) = 0. For T < 0,189

GT (t) is not defined.190

Following Section 1 and throughout this paper, a solution of x, x(t), is deemed ran-

dom when x(t) is independent of x(t+T ) for any time t and for all T larger than a thresh-

old. The evolution from x(t) to x(t+T ) is determined by GT (t) defined in Eq.(4). To

understand what makes x(t) independent of x(t + T ), we explore properties of GT (t)

for different values of T . We do so systematically by grouping the states at separated

time points along a solution according to the time span that separates the time points.

When setting the initial time of the solution at zero, such a group forms a series {x(iT )|i ∈

Z∗}, where T denotes the length of the time span, x(iT ) denotes the solution of x at time

t = iT , and Z∗ is the set of non-negative integers. The integral forcing, which is respon-

sible for the evolution from one member to the next in the series {x(iT )|i ∈ Z∗}, con-

stitutes the series {GT (iT )|i ∈ Z∗}, where GT (iT ) is obtained by setting t = iT in
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Eq.(4). We have for any T ∈ R∗

x(iT + T ) = x(iT ) +GT (iT ), i ∈ Z∗. (5)

Both {x(iT )|i ∈ Z∗} and {GT (iT )|i ∈ Z∗} are discrete series, with their members be-191

ing defined at discrete times t = iT with i ∈ Z∗.192

2.2 Discrete solutions193

For a real physical system, the set of governing equations in form of Eq.(1) often

does not have analytical solutions, and must be solved numerically by discretizing the

time axis using a time increment ∆t. The resulting solutions are referred to as discrete

solutions. A discretized version of Eq.(1) takes the form

xj+1 = xj + Fj∆t. (6)

Integer j counts the j-th time step at t = j∆t. xj is a component of the solution xj

at the j-th time step, and Fj = F (xj). Following Eq.(4), the integral forcing of x at

the k-th time step, Gτ,k, is defined as the integral over Fj at τ time steps starting from

the k-th time step:

Gτ,k =

k+τ−1∑
j=k

Fj∆t, τ ∈ Z+. (7)

Z+ is the set of positive integers. Similar to GT (t), Gτ,k can only be obtained by inte-194

grating the whole system forward in time. Different from GT , which is a function of con-195

tinuous solution, Gτ is a function of discrete solution. Gτ is not defined for τ ≤ 0.196

Again, to understand the behaviors of a solution at separated time steps, we ex-

plore the properties of Gτ,k for different values of τ . To do so, we group the states at sep-

arated time steps along a solution according to the number of time steps covering the

separation. Setting again the initial time of a discrete solution at the origin, such a group

forms a series {xiτ |i ∈ Z∗}, where τ denotes the number of time steps covering the sep-

aration, and xiτ is the solution at the iτ -th time step (i.e. at the (i×τ)-th time step).

The integral forcing, which is responsible for the evolution from one member to the next

in the series {xiτ |i ∈ Z∗}, constitutes the series {Gτ,iτ |i ∈ Z∗}, where Gτ,iτ is obtained

by setting k = iτ in Eq.(7). We have for any value of τ ∈ Z+,

xiτ+τ = xiτ +Gτ,iτ , i ∈ Z∗. (8)
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We note that as a consequence of discretization, Gτ,iτ is not defined for τ = 0 and197

equals Fi∆t for τ = 1. Provided that ∆t is reasonably small, we assume that the prop-198

erties of Gτ can be considered as the properties of GT . We describe these properties in199

term of Gτ , since they can only be verified when knowing the solution of x, and since200

for systems of our interests, only discrete solutions are available.201

3 Properties of integral forcing202

Important for the consideration below is the condition of a physical system referred203

to as equilibrium. This condition can be achieved under the influence of constant exter-204

nal forcings. For a multi-dimensional system, an equilibrium is generally not described205

by a solution that is independent of time, but by a solution that varies stationarily with206

time. If the external influences were kept constant forever, the solution would continue207

to vary stationarily into infinite times. In case of a climate model, an equilibrium of the208

model can be reached by integrating the model under constant external forcing condi-209

tions for some time (to allow the model to spin up).210

Consider a multi-dimensional system in equilibrium. For every component x of the211

system’s state vector x, and for any τ ∈ Z+, the properties of the integral forcing of212

x, Gτ,iτ ∈ {Gτ,iτ |i ∈ Z∗}, are described by the following three postulates.213

I Gτ,iτ consists of, apart from a constant ĉτ , a dissipating component d̂τxiτ and a fluc-

tuating component fτ,iτ , and can be written as

Gτ,iτ = ĉτ + d̂τxiτ + fτ,iτ for τ ∈ Z+. (9)

ĉτ and d̂τ are the intercept and the slope of the line obtained by regressing Gτ,iτ214

against xiτ using n pairs of (xiτ , Gτ,iτ ) along a solution, where n is finite. fτ,iτ , the215

residual not described by the regression line, is determined such that Gτ,iτ in Eq.(9)216

is identical to Gτ,iτ in Eq.(8) calculated from Eq.(7).217

II The expression given in Eq.(9) is unique in the sense that it can be replaced by

Gτ,iτ = cτ + dτxiτ + fτ,iτ for τ ∈ Z+, (10)

where

cτ = lim
n→∞

ĉτ , dτ = lim
n→∞

d̂τ . (11)
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Moreover, the dissipating and fluctuating components are related to each other via

σ2
fτ = σ2

x

(
1− (1 + dτ )

2
)
, for dτ ∈ [−2, 0], (12)

where σ2
fτ

is the variance of the series {fτ,iτ |i ∈ Z∗} and σ2
x is the variance of the218

series {xiτ |i ∈ Z∗}. On the plane spanned by dτ and σ2
fτ

or the plane spanned by219

dτ and σ2
fτ
/σ2

x, Eq.(12) is a curve that has its maximum at the center where dτ =220

−1 and is mirror symmetric about dτ = −1. Such a curve is referred to as a fluctuating-221

dissipating curve, or for short a fd-curve.222

III There exists a threshold τ0 such that Gτ,iτ with τ > τ0 emerges as a unified forc-223

ing consisting of a dissipating component characterized by dτ = −1, and a fluc-224

tuating component fτ,iτ that behaves like a white noise.225

Postulate I, which is the basis of all postulates, adopts the idea behind the fluc-226

tuation - dissipation theorem (Callen & Welton, 1951) that for a system in equilibrium,227

anything that generates fluctuations must also damp the fluctuations. In case of the Brow-228

nian motion, the collisions with fluid molecules make a Brownian particle to fluctuate.229

At the same time, the collisions introduce a drag that damps the movement of the par-230

ticle. Postulate I says that for a system in equilibrium, Gτ always contains a dissipation,231

independent of the value of τ and no matter which one of the components of x is con-232

sidered. Whether this is true is a priori not clear.233

To verify these postulates, we need many long series {xiτ |i = 1, 2, · · · } and {Gτ,iτ |i =234

1, 2, · · · }, for many different values of of τ . Despite the advance of computer technology,235

numerically deriving all these long series is still challenging for a high-dimensional sys-236

tem, such as a climate model or a Brownian system. We hence verify these postulates237

in terms of the Lorenz model (Lorenz, 1963). This model is multi-dimensional and pos-238

sesses an equilibrium described by stationarily varying and seemingly random solutions.239

3.1 Verification of Postulate I240

Formally, Gτ,iτ can always be described by the expression given in Eq.(9) using a241

properly chosen fτ,iτ . Since no conditions have been imposed on fτ,iτ , apart from its ex-242

istence, Postulate I is verified by showing that d̂τ is negative for all components of x and243

for all τ ≥ 1. Fig.2 shows for the three Lorenz components (magenta, blue and green)244

and for five values of τ that the regression line is indeed always tilted with a negative245
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slope. The exact values of d̂τ are truncated to two digits after the dot and listed in the246

bottom left corner of each scatter diagram. Negative slopes are also found for all other247

considered values of τ , as shown by Fig.5.248

3.2 Verification of Postulate II249

Postulate II is verified in terms of Fig.3 and Fig.4. Fig.3 shows for all three Lorenz250

components and for two different values of τ that ĉτ and d̂τ converge with increasing n,251

the number of data points (xiτ , Gτ,iτ ) used for calculating the regression line. The con-252

vergences suggest that both cτ = lim
n→∞

ĉn and dτ = lim
n→∞

d̂n exist. Gτ,iτ can hence be253

uniquely expressed in terms of Eq.(10). The notions ĉτ and d̂τ are still used, since ev-254

erything we show are derived from a finite number of data points along a solution.255

Fig.4 shows the fd-curves complemented by the variances of the three Lorenz com-256

ponents (black lines). For all three Lorenz components, the points (d̂τ , σ̂
2
fτ
) (magenta,257

blue, and green dots) are located right on the fd-curve σ2
fτ

= σ2
x

(
1−(1+dτ )

2
)
(top);258

and the points with normalized variance, (d̂τ , σ̂
2
fτ
/σ̂2

x), are located right on the fd-curves259

σ2
fτ
/σ2

x =
(
1 − (1 + dτ )

2
)
(bottom). Thus, the relation between σ̂2

fτ
and d̂τ can be260

readily described by Eq.(12) for a large but finite n. Appendix B shows further how Eq.(12)261

emerges in the limit n → ∞.262

Regarding the points (d̂τ , σ̂
2
fτ
) or (d̂τ , σ̂

2
fτ
/σ̂2

x), there is a difference between the three263

Lorenz components. As τ increases, the points of the first two Lorenz components (ma-264

genta and blue dots) move from the right end to the center of the fd-curve, and even-265

tually stay and remain to stay at the center of the curve. d̂τ strengthens monotonically266

from zero to -1 with increasing τ , and equals -1 for τ larger than a threshold. For the267

third Lorenz component, the points (green dots) move with increasing τ from the right268

end of the curve toward the left, pass the center of the curve, and reach the most left269

position at d̂τ > −2. As τ further increases, they move backward toward the right, pass270

the center of the curve, and reach the most right position at d̂τ < 0. Thereafter, they271

continue to move back and forth around the center of the fd-curve, with the far left and272

the far right position reached becoming increasingly close to the center the fd-curve. As273

a result, d̂τ strengthens from zero to -1 in a non-monotonic manner.274
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3.3 Verification of Postulate III275

Postulate III is verified by Fig.5 and Fig.6. The two figures show that for all three276

Lorenz components, there exists a threshold τ0 such that for τ > τ0, Gτ,iτ represents277

a unified forcing. The phrase “unified” refers to the same type of Gτ,iτ , no matter which278

component of x is considered, and independent of values of τ provided τ > τ0. This279

unified forcing contains a dissipating component that is characterized by dτ = −1 and280

a fluctuating component whose auto-correlation function resembles that of a white noise.281

The threshold τ0, beyond which the unified forcing is found, depends on the component282

x considered. It is smaller for the first two Lorenz components (magenta and blue) than283

for the third Lorenz component (green).284

By definition, Gτ,k is the sum over Fj at τ time steps obtained when integrating285

the whole system from time step k to time step k + τ − 1. Before Gτ,k with dτ = −1286

is produced, the forward integration first produces G1,k = Fk∆t, then G2,k = Fk∆t+287

Fk+1∆t, and so forth, and eventually Gτ,k =
∑k+τ−1

j=k Fj∆t. Thus, we should see a gen-288

eral strengthening of the dissipating component, characterized by an overall increase from289

|d1|, to |d2|, and so forth, before the maximum characterized by |dτ | = 1 is reached. A290

sign of this can already be seen from Fig.2, which shows a general strengthening of dτ291

with increasing value of τ (from top to bottom row in Fig.2).292

For τ < τ0, the way how the dissipating component of Gτ,iτ strengthen with in-293

creasing τ is different for different Lorenz component. While the strengthening is mono-294

tonic for the first two Lorenz components, it is non-monotonic for the third Lorenz com-295

ponent. The former is characterized by the uni-dimensional movement of the (d̂τ , σ̂
2
fτ
)-296

point along the fd-curve with increasing τ described before, which results in the magenta297

and blue lines in Fig.5. The latter is characterized by the back and forth swing of the298

(d̂τ , σ̂
2
fτ
)-point along the fd-curve, which results in the green lines in Fig.5.299

4 Impacts of integral forcing Gτ300

The dissipation, that is associated with Gτ and characterized by dτ , is the same

between any two adjacent members in the series {xiτ |i ∈ Z∗}. As such, it systemati-

cally weakens the link between xiτ and xiτ+τ , resulting in an auto-correlation function

of x at lag τ , ρτ , whose magnitude is smaller than one. This relation between dτ and
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ρτ (see Appendix C for its derivation) is described by

ρτ = 1 + dτ , for τ ∈ Z+. (13)

Although presented as an equality, ρτ should be regarded as the effect resulting from dτ ,301

since xiτ+τ that has a weaker link to xiτ is generated by Gτ,iτ that diminishes xiτ by302

the amount quantified by |dτ |.303

For Gτ with τ > τ0, Gτ,iτ = cτ + dτxiτ + fτ,iτ is replaced by

Gτ,iτ = cτ − xiτ + fτ,iτ , (14)

with fτ,iτ being a white-noise-like forcing. With Eq.(14), Eq.(8) reduces to

xiτ+τ = cτ + fτ,iτ . (15)

xiτ+τ becomes independent of xiτ , a behavior deemed as random in Section 1. We hence304

conclude that it is the integral forcing Gτ of x with τ > τ0, that makes the solution of305

x to become random. Given Eq.(15), the variance of the series {xiτ |i ∈ Z∗}, which equals306

also the variance of the series {xj |j ∈ Z∗}, becomes identical to the variance of {fτ,iτ |i ∈307

Z∗}. Consequently, the ratio r = σ2
fτ
/σ2

x is identical to one, as shown in Fig.5b).308

Furthermore, for any two adjacent members in the series {xiτ |i ∈ Z∗}, it is im-309

possible to determining the past member xiτ from the future member xiτ+τ , despite of310

Eq.(8). This is because as Gτ,iτ with τ > τ0 emerges through forward integration, the311

dissipating component of Gτ,iτ cancels with the past state xiτ little by little and even-312

tually completely, before xiτ+τ is generated by the fluctuating component fτ,iτ of Gτ,iτ313

at time step iτ+τ . Consequently, xiτ is independent of fτ,iτ . This independence leads314

to a parallelogram-like shape of the scatter obtained when regressing Gτ,iτ against xiτ315

(two bottom rows of Fig.2). The evolution from xiτ to xiτ+τ is not only random but also316

irreversible.317

The relation between two adjacent members in the series {xiτ |i ∈ Z∗} with τ >318

τ0 is in striking contrast with the relation between x(t) and x(t+δt) with an infinites-319

imal δt for a continuous solution, or the relation between xk and xk+1 for a discrete so-320

lution. Given F (x(t)), Eq.(1) is also valid when time is reversed. Given Fk, Eq.(6) can321

be integrated for a given past state xk forward in time to predict the future state xk+1,322

or integrated for a given future state xk+1 backward in time to predict the state mem-323
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ber xk. The evolution from x(t) to x(t+δt) with an infinitesimal δt is reversible, so does324

the evolution of from xk to xk+1. The key to the reversibility is the differential forcing325

F (x(t)), or Fk, which represents a forcing rate at a time instant. This stands in stark326

contrast to Gτ,k, which is a forcing over a time span of non-zero length.327

5 Significance of passing of time328

A further aspect that makes Gτ,k different from F concerns the dissipation repre-329

sented by Gτ , which should not be confused with the damping included in F . We refer330

the latter as “damping” to distinguish it from the dissipation in Gτ . In the Lorenz model,331

F contains a linear damping ax with a =-10, -1, and -8/3 for the three components re-332

spectively. The damping in F differs from the dissipation in Gτ . Being a differential forc-333

ing, the strength of the damping (i.e. a in the Lorenz model) represents a damping rate,334

and has the unit of 1/[t], with [t] being the unit of time. Different from that, the dis-335

sipation in Gτ , which is characterized by dτ , represents a portion of dissipation and is336

dimensionless. More importantly, the damping in Fj is not associated with any specific337

timescale, consistent with the fact that it represents a rate, whereas dτ is associated with338

one and only one timescale of length τ∆t. dτ represents the dissipation experienced by339

an evolution of x from xk to xk+τ over τ time steps.340

We further explore the difference between the damping in F and the dissipation341

in Gτ using the Lorenz model. In this paper, the Lorenz model is solved using ∆t = 0.01.342

With this value of ∆t, the damping within one time step, a∆t, equals -0.1, -0.01, and343

-0.027 for the three Lorenz components, respectively. Here, we have disregarded the im-344

pact of the numerical scheme used for solving the discretized equations, which can af-345

fect the damping amount by a few percent. The values of a∆t can be compared with the346

dissipation experienced by x as x evolves from xi to xi+1 over a time span of length ∆t,347

which is quantified by d1 and listed in the first row of Fig.2. We find that the values of348

a∆t are much larger than the values of d1.349

We further explore the difference between the damping in F and the dissipation

in Gτ by considering the limit ∆t → 0. In this limit, Eq.(6) converges to Eq.(1), and

d1 converges to dT with T = 0 defined for a continuous solution. Since for T = 0, GT (t) =

G0(t) = 0 for all t ∈ R∗, dT with T = 0 must also be zero. However, the fact that

d1 → 0 in the limit ∆t → 0 does not make d1 so different from the damping within
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one time step, a∆t, since we have also a∆t → 0 in the limit ∆t → 0. The difference

between the damping in F and the dissipation in Gτ becomes only apparent when con-

sidering the rate of dissipation and the rate of damping. Fig.7 shows that a∆t is pro-

portional to −∆t, whereas d1 is proportional to −∆t2. Thus, the dissipation rate van-

ishes,

lim
∆t→0

d1
∆t

= 0, (16)

whereas the damping rate

lim
∆t→0

a∆t

∆t
= a (17)

is generally not zero. Eq.(16) and Eq.(17) suggest that the damping in F and the dis-350

sipation in Gτ are two different things. The dissipation in Gτ cannot be included in F351

as a forcing rate, since this rate vanishes exactly.352

Given the link of dτ to the specific timescale of length τ∆t , we may interpret the353

dissipation in Gτ,k as something that results from interactions of xk with other compo-354

nents of x, that have taken place within a time span covering τ time steps starting from355

the k-th time step. The length of the time span is τ∆t. For τ = 1 and when ∆t goes356

to zero, the length of the time span, τ∆t = ∆t, goes to zero. No interaction of x with357

other components of x can complete within a time span of vanishing length. d1 approaches358

zero. On the other hand, increasing the value of τ for a given ∆t increases the length359

of time span τ∆t. The larger the value of τ , the more interactions between xk and other360

components of x can take place within the time span extending from the k-th to the (k+361

τ−1)-th time step, the stronger is the dissipation resulting from these interactions. The362

threshold τ0, beyond which Gτ equals the unified forcing, corresponds to the length of363

the time span that starts from the k-th time step and encompasses all interactions, and364

only these interactions, between xk and other components of x. Further extending the365

length of this time span (by increasing τ) allows more interactions to occur within the366

time span. However the additional interactions no longer involve xk at the k-th time step367

and hence no longer contribute to the dissipation of xk.368

Accepting the idea of the fluctuation - dissipation theorem that for a system in equi-369

librium, anything that generates fluctuations must also damp the fluctuations, this “any-370

thing” is manifested in actions that take place in form of interactions of x with other com-371

ponents of x. Without the passing of time, these actions cannot be completed and the372

associated dissipation cannot take effect. The demand on the passing of time is in stark373
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contrast to the damping in F , which is a forcing rate needed to balance the rate of ex-374

ternal forcing, and exists without the passing of time.375

6 Significance of multi-dimensionality376

The interpretation of the timescale dependence of dτ suggests that multi-dimensionality377

is a necessarily condition for Gτ to possess a dissipation that allows Postulate III to be378

valid, and with that a solution that is random. Even though we are unable to prove this379

assertion rigorously, we provide below some supporting evidences. We do so by consid-380

ering two one-dimensional systems as counterexamples, for which Postulate III is not valid,381

and consequently whose solutions cannot be random.382

The first example is the one-dimensional system dx
dt = β, where β is a constant.383

This system has the analytical solution x(t) = x0 + βt. The differential forcing of x384

is β; the integral forcing of x is GT (t) = βT . For a given non-zero value of T , the re-385

gression slope dT obtained from regressing GT (t) against x(t) is zero, since GT (t) is in-386

dependent of t, no matter whether β is positive or negative. With dT = 0, GT (t) does387

not contain a dissipating component. Postulate I is not valid. Without Postulate I, the388

other two postulates, especially Postulate III, are meaningless. The solution x(t) = x0+389

βt is always deterministic.390

The second example is the one-dimensional cosine model, dx
dt = cos(2πt/P ) with391

period P . This model has the analytical solution x(t) = x0 +
P
2π sin(2πt/P ). The dif-392

ferential forcing of x is cos(2πt/P ); the integral forcing of x is GT (t) =
P
2π

(
sin(2π(t+393

T )/P )− sin(2πt/P )
)
. Fig.8 shows for six values of T and for t = iT and i = 1, · · · , n,394

how GT (t) are scattered against x(t). Also shown are the regression line GT (iT ) = cT+395

dTxiT + fT,iT for each value of T . In all six cases, the regression lines are tilted with396

a slope dT < 0, albeit dT with a value of T that is close to a multiple of P (as in Fig.8a,397

f) is close to zero and has to be listed as -0.00 when keeping only two digits after the point.398

The negative slope is also found for T = P/4 (Fig.8d), for which the period of GT (iT )399

is four and the regression line goes through only four pairs of (xiT , GT (iT )). Thus, the400

integral forcing GT (iT ) can also be decomposed into a dissipating and a fluctuating com-401

ponent for a periodic solution. Postulate I is valid for the cosine model. The idea that402

for a system in equilibrium, anything that generates fluctuations must also dampen those403
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fluctuations, seems to apply universally to all types of stationarily varying solutions, re-404

gardless of whether they are periodic or non-periodic.405

Postulate II is also valid for the cosine model. The points (dT , σ
2
fT
) (black dots in406

Fig.4), which can be calculated using the analytical expressions of GT (iT ) and x(iT ) with407

i = 1, · · · , n, are located right on the corresponding fd-curve, which is indicated by the408

orange line in Fig.4a) and collapses to the black line in Fig.4b). Thus, the dissipating409

and fluctuating component of the integral forcing of a periodic solution are also related410

to each other via Eq.(12).411

The situation is different for Postulate III. The general strengthening of dT with412

increasing T , which in this example can only occur in a non-monotonic manner, cannot413

be realized by the one-dimensional cosine model. dT , which is a periodic function of T ,414

retains its overall strength with increasing T . The points (dT , σ
2
fF

) or (dT , rT ) (black dots415

in Fig.4) swing with increasing T from the right end (where dT = 0) to the left end (where416

dT = −2) of the fd-curve and continue to swing with the same reach as T goes to in-417

finity. No threshold of T exists such that for T larger than this threshold, GT (t) reduces418

to a forcing consisting of a dissipating component with dT = −1 and a white-noise like419

fluctuating component. Postulate III is not valid. The sinus solution at time t is always420

related to the sinus solution at time t+ T later, independent of the value of T .421

7 Conclusions422

Consider a system described by a multi-dimensional state vector x, whose evolu-423

tion is governed by a set of equations in form of dx/dt = F (x(t)) with x being a com-424

ponent of x and F = F (x(t)) being a deterministic function of x. When solving such425

a system at discrete time steps, the solution of x at a time step can become independent426

of the solution of x at a later time step, a behavior deemed as random. This paper ex-427

amines how this randomness arises from internal dynamics represented by F . We do so428

by exploring the properties of the integral forcing Gτ,k, which equals the integral over429

F at τ time steps starting from the k-th time step. Gτ,k is responsible for the evolution430

of x from xk to xk+τ . The following conclusions are drawn.431

First, for a system in equilibrium, the integral forcing Gτ,k consists of (apart from432

a constant cτ ) a dissipating component dτxk with dτ < 0 and a fluctuating component433

fτ,k, and can be expressed as Gτ,k = cτ+dτxk+fτ,k. This expression is in accordance434
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with the idea behind the fluctuation - dissipation theorem that for a system in equilib-435

rium, anything that generates fluctuations must also damp the fluctuations. The two com-436

ponents of Gτ,k are related to each other following the rule described by the fd-curve.437

There exists a threshold τ0 such that Gτ,k with τ > τ0 emerges as a unified forcing. The438

dissipating component of this forcing is characterized by dτ = −1, and the fluctuating439

component of this forcing behaves like a white noise, independent of τ , as long as τ >440

τ0, and no matter which component of x is considered.441

Second, for τ > τ0, the state xk+τ , which is nominally produced by Gτ,k via xk+τ =442

xk+Gτ,k, equals then xk+τ = cτ+fτ,k, with fτ,k being a white-noise-like forcing. The443

series {xiτ |i ∈ Z∗} becomes random, since any one member in the series is independent444

of any other member of the series. This series is also irreversible, since a member xiτ is445

little by little canceled by the dissipation that emerges as soon as the system is integrated446

forward in time. By the time when the system is integrated over τ time steps to allow447

the emergence of Gτ,iτ , xiτ is completely canceled by the dissipating component of Gτ,iτ .448

xiτ+τ is generated by the fluctuating forcing of Gτ,iτ , which is independent of xiτ .449

Third, while the damping in Fj represents a typically non-zero damping rate needed450

for counterbalancing the rate of external forcing, the dissipation in Gτ,k arises from ac-451

tions completed over a time span of non-zero length. More precisely, these actions are452

interactions of xk with other components of x completed during the time span extend-453

ing from time step k to time step k+τ−1. The number of these interactions inevitably454

goes to zero when the length of the time span goes to zero. It reaches a maximum, when455

the length of the time span equals τ0 time steps. Since the completion of these actions456

requires the passing of time, the resulting dissipation cannot be included in the differ-457

ential forcing F .458

Finally, being arising from interactions among components of x, randomness is a459

peculiar feature of a multi-dimensional system. The solution of a one-dimensional sys-460

tem cannot be random.461

The above conclusions are drawn based on the integral forcing numerically obtained462

from the Lorenz’s 1963 model. Verifying them for high-dimensional systems requires great463

computational efforts. By suggesting that Gτ consists of a dissipating and a fluctuat-464

ing component, we link the mechanism responsible for the emergence of randomness with465

the fluctuation-dissipation theorem known in statistical physics. By demonstrating that466
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the dissipation in Gτ cannot be included in F but emerges as soon as the system is in-467

tegrated forward in time, we identify the mechanism as resulting from interactions com-468

pleted within a time span of non-zero length. When further verified, the idea behind the469

fluctuation and dissipation theorem should be considered as generally valid for multi-470

dimensional systems that are in equilibrium and governed by differential equations in471

form of dx/dt = F .472
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Figure 1. Spectra of a) a spherical harmonic coefficient simulated by an atmospheric model

(James & James, 1989), b) zonally averaged SLP difference representing the Southern Annu-

lar Mode from the NCEP/NCAR reanalysis (solid black) and from models (gray) (Deser et al.,

2012), c) the three components of the Lorenz’s 1963 model (von Storch, 2022), d) and e) current

kinetic energy from instrumental records in the North Atlantic at 500 m and in the South Pacific

at 1000m (Ferrari & Wunsch, 2009). Using detrended time series (dashed black line in b) can be

considered as a way to eliminate the influence from external forcings

.
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Figure 2. Scatter diagrams of Gτ,iτ against xiτ (dots) and the respective regression lines

Gτ,iτ = ĉτ + d̂τxiτ (black lines) for five values of τ (listed on the far left) and for the three Lorenz

components (magenta, blue, green), as derived from n = 106 pairs of (xiτ , Gτ,iτ ). ĉτ , d̂τ , and

σ̂2
fτ are calculated following Eq.(A1) - Eq.(A4) in Appendix A. Numbers listed in each scatter

diagram are values of d̂τ and r̂ = σ̂2
fτ /σ̂

2
x, where σ̂2

fτ is the variance of {fτ,iτ |i = 1, · · · , n} and σ̂2
x

is the variance of {xiτ |i = 1, · · · , n}. Points (xiτ , Gτ,iτ ) are collected along a stationary Lorenz

solution. A stationary Lorenz solution is obtained by first integrating the Lorenz model from an

arbitrary initial state for a sufficiently long time. The integration is done using a Runge Kutta

scheme with a time step of 0.01.

.
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Figure 3. ĉτ (top) and d̂τ (bottom) for τ = 2 (left) and τ = 10000 (right) and for the three

Lorenz components (magenta, blue and green) as functions of n, the number of pairs (xiτ , Gτ,iτ )

used for their calculations. The calculation is carried out using an increment in n that equals one

for 1 ≤ n ≤ 500 and equals 20 for 500 ≤ n ≤ 10000.
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Figure 4. σ2
fτ = σ2

x(1 − (1 + dτ )
2) (top) and σ2

fτ /σ
2
x = (1 − (1 + dτ )

2) (bottom), with σ2
x

being set to the variance of each of the three Lorenz components (black lines) and to the variance

of the solution of dx/dt = cos(2πt/P ) with period P = 200 (orange line). The latter equals

P 2/(8π2) = 506.61. Colored dots are points (d̂τ , σ̂
2
fτ ) (top) and points (d̂τ , σ̂

2
fτ /σ̂

2
xτ

) (bottom)

with τ = 1, · · · , 1000, each obtained using n = 106 pairs of (xiτ , Gτ,i) along a stationary Lorenz

solution, with the colors (magenta, blue, and green) indicating the Lorenz components. Black

dots are points (dT , σ
2
fT

) with T = 1, 2, · · · , P , obtained from (x(iT ), GT (iT )) with i = 1, · · · , 5P .

Both x(iT ) and GT (iT ) are calculated using the analytical expressions obtained from the cosine

model. dT and σ2
fT

are calculated using the regression defined in the same way as for the discrete

solution. –26–
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Figure 5. d̂τ and σ̂2
fτ as functions of τ , derived using n = 105 pairs of (xiτ , Gτ,iτ ) along a

stationary Lorenz solution. d̂τ and σ̂2
fτ obtained from the first two Lorenz components (magenta,

blue), which overlay each other, converge with increasing τ faster than those obtained from the

third component (green). The calculation is done using an increment in τ that equals 10 for

1 ≤ τ ≤ 1001 and equals 200 for τ > 1001.
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Figure 6. Auto-correlation function f̂τ,iτ f̂τ,(i+k)τ

n

of fluctuating component f̂τ,iτ , defined as

1/n
∑n

i=1 f̂τ,iτ f̂τ,(i+k)τ , for six values of τ , obtained for the three Lorenz components (magenta,

blue, green) using n = 106 data points along a stationary Lorenz solution. f̂τ,iτ f̂τ,(i+k)τ

n

is a

function of k. The smallest non-zero time lag resolved by f̂τ,iτ f̂τ,(i+k)τ

n

is obtained for k = 1,

corresponding to a time lag of τ time steps.
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Figure 7. Dissipation associated with integral forcing G1 (i.e. Gτ with τ = 1, solid lines)

and damping amount due to differential forcing F (dashed lines) as functions of time increment

∆t, for the three Lorenz components (magenta, blue, and green). The dissipation associated

with G1 is quantified by d̂1. For a given value of ∆t, d̂1 is the regression slope obtained by re-

gressing G1,i against xi using (xi, G1,i) with i = 1, · · · , 106 along a Lorenz solution computed

with this ∆t. The damping amount due to F is quantified by ã∆t, where ã is the proportional-

ity factor of the linear damping in the discretized Lorenz model. The values of ã differ slightly

from a = −10,−1,−8/3 given in the Lorenz model. The difference results from the numerical

scheme used, which is the fourth order Runge-Kutta scheme in this study. The two black lines

are proportional to −∆t and −∆t2, respectively.
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Figure 8. Same as Fig.2, but for the cosine model dx/dt = cos(2πt/P ) with period P = 200

for six different values of T . Dots are the points
(
x(t), GT (t)

)
with t = iT , i = 0, 1, · · ·n, and

n = 103. They overlap when the periods of
(
x(iT ), GT (iT )

)
, which vary with T , are shorter than

n. Lines are regressions GT (iT ) = cT + dT x(iT ) obtained from the n points. Numbers listed are

values of dT and r = σ2
fT

/σ2
x with σ2

x = P 2/(8π2). Note that if T is a multiple of P/2, we have

GT,iT = 0. Different from Fig.2, the symbolˆis dropped, since for n that is a multiple of P , cT ,

dT , σ
2
fT

and σ2
x do not change with increasing n.
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Appendix A Calculation of intercept cτ , regression slope dτ and524

residual fτ,iτ525

This appendix shows how the intercept cτ , the regression slope dτ , and the resid-

ual fτ,iτ (or the fluctuating component of Gτ,iτ ) and its variance σ2
fτ

are calculated. Since

Eq.(9) represents a regression of Gτ,iτ against xτ,i, we use the known result of least squared

fitting and define

ĉτ ≡
(
∑n

i=1 Gτ,iτ )(
∑n

i=1 x
2
iτ )− (

∑n
i=1 xiτ )(

∑n
i=1 xiτGτ,iτ )

n(
∑n

i=1 x
2
iτ )− (

∑n
i=1 xiτ )2

(A1)

d̂τ ≡
n(
∑n

i=1 xiτGτ,iτ )− (
∑n

i=1 xiτ )(
∑n

i=1 Gτ,iτ )

n(
∑n

i=1 x
2
iτ )− (

∑n
i=1 xiτ )2

. (A2)

Given ĉτ and d̂τ , fτ,iτ is defines as

f̂τ,iτ ≡ Gτ,iτ − ĉτ − d̂τxiτ , (A3)

with variance

σ̂2
fτ ≡ 1

n

n∑
i=1

f̂2
τ,iτ . (A4)

We use ˆ to distinguish quantities obtained from a finite number n of data points from

quantities obtained in the limit n → ∞:

cτ = lim
n→∞

ĉτ , (A5)

dτ = lim
n→∞

d̂τ , (A6)

σ2
fτ ≡ lim

n→∞
σ̂2
fτ (A7)

and

fτ,iτ = Gτ,iτ − cτ − dτxiτ . (A8)

For the Lorenz model, ĉτ and d̂τ (Fig.3) and σ̂2
fτ

(not shown) converge with increasing526

value of n.527
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Appendix B Derivation of the fd-curve528

This appendix derives the fd-curve that describes the relation between the dissi-529

pating and fluctuating component of an integral forcing Gτ,iτ with τ ∈ Z+. We start530

from expressing Gτ,iτ in terms of intercept ĉτ , regression slope d̂τ and residual f̂τ,i, de-531

fined using n data points along a solution, with n being finite, and proceed further by532

considering the limit n → ∞.533

For τ ∈ Z+, we rewrite Eq.(8) using Eq.(A3) as

x(i+1)τ = xiτ +Gτ,iτ = ĉτ + (1 + d̂τ )xiτ + f̂τ,iτ , for τ ∈ Z+. (B1)

We define the mean and the variance of the series {xiτ |i = 1, · · · , n} by

µ̂xτ
≡ 1

n

n∑
i=1

xiτ , (B2)

σ̂2
xτ

≡ 1

n

n∑
i=1

(xiτ − µ̂xτ
)2, (B3)

and the mean of {f̂τ,iτ |i = 1, · · · , n} by

µ̂fτ ≡ 1

n

n∑
i=1

f̂τ,iτ , (B4)

and the covariance between f̂τ,iτ and xiτ by

f̂τ,iτx
n

=
1

n

n∑
i=1

f̂τ,iτ (xiτ − µ̂xτ ), (B5)

where

(·)
n
≡ 1

n

n∑
i=1

(·). (B6)

Rearranging Eq.(B1) by expressing x(i+1)τ in terms of x(i+1)τ − µ̂xτ
and xiτ in terms

of xiτ − µ̂xτ through adding and subtracting µ̂xτ , we find,

x(i+1)τ − µ̂xτ = ĉτ + d̂τ µ̂xτ + (1 + d̂τ )(xiτ − µ̂xτ ) + f̂τ,iτ , for τ ∈ Z+. (B7)

Squaring Eq.(B7) and applying (·)
n
to the result, we obtain after making use of xiτ − µ̂xτ

n
=

0,

(x(i+1)τ − µ̂xτ
)2

n
− (1 + d̂τ )

2 σ̂2
xτ

= σ̂2
fτ +A1 +A2 +A3 (B8)
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with

A1 = (ĉτ + d̂τ µ̂xτ )
2 (B9)

A2 = 2(ĉτ + µ̂xτ d̂τ )µ̂fτ (B10)

A3 = 2(1 + d̂τ )f̂τ,iτx
n

. (B11)

For a sufficiently large n, (x(i+1)τ − µ̂xτ )
2
n
is well approximated by (xiτ − µ̂xτ )

2
n
= σ̂2

xτ
.

Eq.(B8) reduces to (
1− (1 + d̂τ )

2
)
σ̂2
xτ

= σ̂2
fτ +A1 +A2 +A3 (B12)

Fig.B1 shows for the three Lorenz components and for τ = 2 and τ = 5000 re-

spectively, how the three A-terms defined in Eq.(B9)-Eq.(B11) evolve with increasing

number n of data points used for their calculations. A1 and A2 (first two rows) converge

fast to zero with increasing n. A3 (bottom panel) is numerically not distinguishable from

zero for all considered values of n. Similar behaviors are found for other values of τ , in-

cluding τ = 1. The three A-terms in Eq.(B12) can hence be considered to be zero for

τ ∈ Z+ for sufficiently large value of n. In the limit n → ∞, Eq.(B12) can, after mak-

ing use of Eq.(A7) and

σ2
x = lim

n→∞
σ̂2
xτ
, (B13)

be rewritten as

σ2
fτ = σ2

x

(
1− (1 + dτ )

2
)
. (B14)

That the limit Eq.(B13) is independent of τ can be easily demonstrated numerically.534
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Figure B1. A1 (top), A2 (middle), and A3 (bottom) as functions of n, derived for the three

Lorenz components (magenta, blue and green) and for τ = 2 (left) and τ = 5000 (right). n is the

number of consecutive data points along a stationary solution used to calculate A1, A2 and A3.
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Appendix C Derivation of the relation between ρτ and dτ535

This appendix establishes the relation between auto-correlation function ρτ of x

and dτ associated with the integral forcing Gτ of x. For τ ∈ Z+, ρτ and the respective

covariance function γτ are defined by

ρτσ
2
x = γτ ≡ lim

n→∞
(x(i+1)τ − µ̂xτ

)(xiτ − µ̂xτ
)
n

(C1)

where µ̂xτ
is defined in Eq.(B2). Multiplying Eq.(B7) by (xiτ−µ̂xτ

) and applying (·)
n

(for its definition, see Eq.(B6)) to the result yields

(x(i+1)τ − µ̂xτ )(xiτ − µ̂xτ )
n
= (1 + d̂τ )σ̂

2
xτ

+ f̂τ,iτx
n

, (C2)

where the equality xiτ − µ̂xτ

n
= 0 is used. Since f̂τ,iτx

n

can be shown to be numeri-

cally not distinguishable from zero, similar to A3 discussed in Appendix B, we can set

f̂τ,iτx
n

to zero. In the limit n → ∞, Eq.(C2) reduces then, after making use of Eq.(B13),

to

ρτ = (1 + dτ ). (C3)
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