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Abstract

Abstract

Continued global warming is increasing the risk of critical threshold temperatures being crossed
for several tipping elements. This would commit them to abrupt and largely irreversible
change with negative impacts on human well-being. The Earth’s carbon cycle contains
tipping elements having the potential to further increase this risk, as they store significant
amounts of carbon that could be released once they are triggered. In this study, we assess
the possible impacts of the two major tipping elements in the Earth’s carbon cycle – the
Amazon rainforest and permafrost – and calculate the probabilities of triggering for 16 tipping
elements under various shared socioeconomic pathway (SSP) scenarios up to the year 2500.
To conduct our analysis, we use the intermediate complexity climate model FaIR which is
coupled to a conceptual model of the tipping processes within the Amazon rainforest and
permafrost. Uncertainties are propagated by employing a Monte Carlo approach for the
construction of large model ensembles. We find that the highest short-term temperature
increase from permafrost and Amazon carbon emissions becomes possible under SSP5-8.5 with
0.4°C (0.09− 1.1°C) in 2100. However, this temperature anomaly decreases since atmospheric
CH4 concentration anomalies are decreasing after 2100 and the highest long-term temperature
increase from permafrost and Amazon carbon emissions becomes possible under SSP2-4.5
with 0.16°C (0.03 − 0.91°C) in 2500. Carbon emissions from permafrost and the Amazon
have the potential to cause super-linearities in the transient climate response to cumulative
anthropogenic CO2 emissions. Moreover, they reduce the feasibility of temperature targets,
increasing the probability of exceeding 2°C in 2100 under SSP1-1.9 from 9.86% to 13.5±0.39%.
Furthermore, carbon emissions from permafrost and the Amazon increase the probabilities
of triggering other tipping elements. Tipping elements become more likely than not to be
triggered on average 9.3 years earlier if those carbon emissions are included. Our findings
emphasize the urgent need for emission reduction to mitigate the risk of triggering multiple
tipping elements. The probability of tipping until 2500 on average over all tipping elements
and without taking carbon emissions from the Amazon or permafrost into account is 28%
under SSP1-1.9, 38% under SSP1-2.6, 65% under SSP2-4.5, 92% under SSP3-7.0, and 95%
under SSP5-8.5. The highest increase in this number caused by additional carbon emissions
from the Amazon and permafrost is observed under SSP2-4.5 with 3.3%. It is unlikely that
tipping events can be entirely avoided, since our analysis indicates that even under SSP1-1.9
five tipping elements are more likely to be triggered than not.
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Chapter 1 Introduction

1 Introduction

The term “tipping point” is commonly used to describe a critical threshold in the forcing
of a system, at which small additional forcing leads to significant and long-term changes of
the system (Lenton et al., 2008). The debate about tipping points in the climate system,
referred to as “climate tipping points”, has intensified over the past two decades. Increasing
numbers of Earth system components have been identified which could possibly exhibit
tipping behaviour (e.g., Lenton et al., 2008; Kriegler et al., 2009; Steffen et al., 2018), with 15
candidates being shortlisted in the latest IPCC report (Lee et al., 2021). These Earth system
components are referred to as “tipping elements” (TEs) and occur within the biosphere,
cryosphere and oceanic or atmospheric circulation (Lenton et al., 2008). The global mean
surface temperature (GMST) relative to pre-industrial levels is used as a common metric to
describe the forcing of the TEs (Armstrong McKay et al., 2022). This means that a tipping
point can be associated with a “threshold temperature” after which the respective TE is
expected to exhibit tipping behaviour (more detailed definition of TEs and tipping points in
Sec.1.1). There is growing concern about the possible proximity of climate tipping points,
as threshold temperatures have been revised to lower levels, with some TEs being at risk of
getting “triggered” (crossing of their threshold temperature) at GMST values as low as 1◦C

(Lenton et al., 2019).

Additional complexity is added to the tipping points debate by interactions between different
TEs, where triggering of one TE makes the triggering of others more or less likely (Kriegler
et al., 2009; Lenton et al., 2019). Those causal interconnections can either have a stabilizing
or destabilizing effect on the network of TEs, and are therefore either decreasing or increasing
the probability of tipping cascades with domino-like tipping of several TEs. A first set of
five interconnected TEs consisting of the Atlantic meridional overturning circulation, the
Greenland and West Antarctic ice sheets, the Amazon rainforest and the El Niño – Southern
Oscillation has been proposed by Kriegler et al. (2009), based on an expert elicitation.
As current Earth system models (ESMs) 1 are unable to comprehensively represent the
interactions between TEs, more conceptual models must be used to study them (Wood et al.,
2019). Using a conceptual dynamic network model based on the estimates of Kriegler et al.
(2009), Wunderling et al. (2021) found that TE interactions tend to destabilize the network
of TEs and make tipping cascades more likely.

Cascade-like tipping of TEs within the Earth’s carbon cycle after crossing a planetary threshold

1 Two different types of global climate models (GCMs) must be distinguished: atmosphere-ocean general
circulation models (AOGCMs) that are unable to predict atmospheric carbon concentrations from carbon
emissions due to an incomplete or lacking representation of the carbon cycle and ESMs that have this
ability (Meinshausen et al., 2020).
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Chapter 1 Introduction

of 2°C of warming might further amplify global warming and therefore lead to a “hothouse
Earth” with significantly higher global temperatures than in the Holocene (Steffen et al.,
2018). The hypothesis of a planetary threshold challenges the concept of the transient climate
response to cumulative CO2 emissions (TCRE), which assumes that GMST is responding
near-linearly to cumulative anthropogenic CO2 emissions, with 1000GtCO2 of cumulative
CO2 emissions likely causing a 0.27°C to 0.63°C increase in GMST (IPCC, 2021). Steffen et al.
(2018) assume that such a planetary threshold could be produced by thawing permafrost and
dieback of the Amazon rainforest and boreal forests in response to global warming, together
with a weakening of carbon uptake by ocean and land systems relative to human forcing. The
latter is well represented in current ESMs from the coupled model intercomparison project
phase 6 (CMIP6) (Eyring et al., 2016; Canadell et al., 2021). However, permafrost thaw,
Amazon rainforest dieback, and Boreal forest dieback are assumed to include tipping points,
which are not well resolved by ESMs (Armstrong McKay et al., 2022; Wunderling et al.,
2021). In particular, the Amazon rainforest and permafrost have been identified as the two
TEs with the highest potential to substantially increase atmospheric carbon concentrations
(Canadell et al., 2021).

As the abrupt changes of the TEs that are assumed to unfold after the respective threshold
temperature is crossed are in general negatively affecting human livelihoods, the proximity of
tipping points calls for rapid reduction of anthropogenic greenhouse gas (GHG) emissions to
limit global warming to 1.5°C to avoid tipping of multiple TEs (Schellnhuber et al., 2016).
This is support by integrated assessment modelling studies, yielding significantly higher social
costs of carbon if economic impacts from TEs are included (Cai et al., 2015; Dietz et al., 2021;
Lontzek et al., 2015). If interactions between the tipping elements are allowed for within
those models, the increase in the social cost of carbon is even more pronounced (Cai et al.,
2016).

If all pledges made by governments are fully implemented on time, global warming can be
limited to just under 2°C (Meinshausen et al., 2022). Even under this high-end mitigation
scenario, multiple TEs become likely to be triggered (Armstrong McKay et al., 2022).
However, current real world policies and actions are leading to a temperature increase of
around 2.7°C in 2100 (Climate Action Tracker, 2022), with accordingly higher chances to
trigger an increasing number of TEs. It remains challenging to make precise statements about
how safe an emission scenario is with respect to triggering multiple TEs due to uncertainties
within the temperature response of the climate system to anthropogenic GHG emissions and
within the threshold temperatures (Forster et al., 2021; Lenton et al., 2019), with potential
interactions between TEs adding to this uncertainty (Wunderling et al., 2021).
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Chapter 1 Introduction

In this study, we aim to bridge this gap by calculating the probabilities of triggering any of
today’s know TEs under various emission scenarios. Furthermore, we estimate the possible
carbon emissions and the caused increase of GMST from tipping of the Amazon rainforest
and permafrost, the two major TEs within the Earth’s carbon cycle which we hereafter refer
to as the “carbon tipping elements”. We use those estimates to explore by how much the
probabilities of tipping of other TEs are increased by carbon TEs. To do this, we rely on
a recent literature review carried out by Armstrong McKay et al. (2022), which is the first
comprehensive reassessment of the TEs, their threshold temperatures, timescales, and impacts
since Lenton et al. (2008). The updated shortlist emerging from this study includes 16 TEs
with threshold temperatures between 0.8°C and 10°C. We use an intermediate complexity
climate model which is coupled to a conceptual model of the carbon TEs for the construction
of large model ensembles following a Mont Carlo approach (Metropolis et al., 1953) to
propagate the uncertainties. Our results cover a comparatively long period of time, namely
up to the year 2500.

In the following parts of the introduction, we provide a detailed definition of TEs and tipping
points, followed by a description of the 16 TEs within the Earth system. Furthermore, we
present recent estimates of carbon emissions from the carbon TEs and introduce our model
approach.

1.1 Defining Tipping Elements and Tipping Points

This study is based on the comparably broad definition of a TE and its respective tipping
point provided by Lenton et al. (2008) and further refined by Armstrong McKay et al. (2022).
Large-scale subsystems or components (Σ) of the Earth system are referred to as TEs if
they can be switched into a qualitatively different state by a small perturbation (Lenton
et al., 2008; Lenton, 2011). The tipping point is the corresponding critical point in the
forcing of the system Σ, at which a small additional forcing will lead to a qualitatively
altered state of the system in the future. This can be formally defined by identifying a single
control parameter (ρ) of the system for which a critical value (ρcrit) exists from which a small
perturbation (δρ > 0) leads to a qualitative change (F̂ ) in a crucial system feature (F ) after
some observation time (T > 0). The change of F is measured with respect to a reference
state of F at ρcrit:

|∆F | = |F (ρ ≥ ρcrit + δρ|T )− F (ρcrit|T )| ≥ F̂ > 0,

with F̂ being significantly higher than the natural variability of F (Lenton et al., 2008). The
critical point in the forcing ρcrit is the tipping point of the TE Σ with the crucial system
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Chapter 1 Introduction

feature F .

We note, that this definition does not require the qualitative change of the system feature to
be irreversible, to happen abrupt, i.e., faster than the cause, or to be self-perpetuating and
does therefore include phase transitions as well as bifurcations. Hence, it differs in that sense
from more strict definitions, which require TEs to be self-perpetuating (e.g., Levermann et al.,
2012; Armstrong McKay et al., 2022). According to the definition of Armstrong McKay et al.
(2022), systems that are not self-perpetuating beyond a certain critical forcing but simply
amplify a perturbation are classified as threshold-free feedbacks.

Tipping elements are defined to be at least of sub-continental scale (length scale of order
∼ 1000 km) (Lenton et al., 2008). This definition has been extended by Armstrong McKay
et al. (2022), who distinguish between “global core” and “regional impact” TEs. To qualify
as a global core TE, a tipping point has to occur uniformly across a sub-continental scale
for a subsystem. However, if the change in forcing is fairly uniform across a large spatial
area, small-scale tipping points can be crossed near-synchronously at a sub-continental scale,
which qualifies the affected subsystem as a regional impact TE.

To be classified as policy-relevant, TEs also have to fulfil the following three conditions
(Lenton et al., 2008):

1. Humans infer with the TE such that decisions taken within a “political” time horizon
(∼ 100 yr) determine whether the respective tipping point is crossed.

2. The qualitative change is observed within an “ethical” time horizon, which is usually
defined as ∼ 1000 yr (Lenton et al., 2008) but was relaxed to ∼ 10 kyr by Armstrong
McKay et al. (2022).

3. A significant number of people are concerned about the fate of the TE because

i) it contributes significantly to the overall mode of operation of the Earth System;

ii) it contributes significantly to human welfare;

iii) it has great value in itself as a unique feature of the biosphere.

Point three has been used by Armstrong McKay et al. (2022) to further distinguish between
global core and regional impact TEs, with the former having to meet (i) whereas the latter
have to meet either (ii) or (iii) but not (i).
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Chapter 1 Introduction

1.2 Tipping Elements within the Earth System

This section gives an overview over the 16 TEs within the Earth system that are currently
identified (Armstrong McKay et al., 2022). For each TE, we describe its role within the Earth
system, discuss the individual feedback mechanisms that are expected to produce a tipping
point and present evidence for tipping dynamics. Furthermore, we revisit the estimates of
the threshold temperature, the timescale, and, if applicable, the carbon emissions of each TE
from Armstrong McKay et al. (2022) our further analysis is largely based on (See Tab. 1 for
a summary). A special emphasis is put on the description of the carbon TEs permafrost and
the Amazon rainforest.

1.2.1 Permafrost

Soils in cold regions like the Arctic contain perennially frozen layers, which are defined as
permafrost if their temperature is at or below 0°C for two consecutive years (Burke et al.,
2020). Permafrost soils are estimated to span an area of 13.9 · 106 km2 (ca. 15% of the
exposed land area) (Obu et al., 2019) and predominantly occur in high northern latitudes in a
periglacial environment characterized by a cold, but not glacial, climate (Dobinski, 2011). A
rough classification of permafrost soils is made by defining continuous permafrost as regions
with > 90% of the land surface being underlain by permafrost and discontinuous permafrost as
regions containing smaller amounts of permafrost (Schuur et al., 2015). Generally, continuous
permafrost is found further north than discontinuous permafrost, with thick sediments
overlying bedrock occurring in both permafrost regions (Fig. 1 in Schuur et al., 2015).

Historically, ecosystems within this region have been a net carbon sink (Lindgren et al., 2018),
characterized by a positive net ecosystem production (NEP), which is the accumulation of
carbon within the ecosystem. The NEP is defined as the difference between carbon gains
of an ecosystem by gross primary production (GPP) and carbon losses from the ecosystem
by plant respiration (Rplant), heterotrophic respiration (Rhet), leaching of carbon from soils
(Fleach) and carbon fluxes due to disturbances (Fdist), e.g., due to fire (Chapin 3. et al., 2002):

NEP = GPP −Rplant −Rhet − Fleach − Fdist.

Positive values of NEP for permafrost ecosystems are the result of low carbon losses rather
than high GPP (Grosse et al., 2011). These low carbon losses can, in turn, mainly be explained
by low values of Rhet, caused by reduced decomposition rates of soil organic carbon (SOC)
by soil fauna and microorganisms due to the perennially frozen conditions, low temperatures
and widespread water-saturation (Mishra et al., 2021).
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The carbon pool stored within the northern permafrost region is estimated to be 1460 −
1600GtC, of which 1070−1360GtC are stored within permafrost soils and deposits (Canadell
et al., 2021). This makes permafrost soils the largest terrestrial organic carbon pool on Earth
(Walter Anthony et al., 2018), with northern permafrost regions containing about twice as
much carbon as the atmosphere (Schuur et al., 2015). Surface soils (0− 3m) are estimated to
contain the biggest share of this pool, with 1014+194

−175GtC (Mishra et al., 2021). The yedoma
region, with deep permafrost carbon deposits (> 3m), is reported to contain 327− 466GtC,
with 83− 250GtC from yedoma deposits, 114 GtC in taberal deposits and 130− 213GtC in
thermokarst deposits (Strauss et al., 2017). Arctic river deltas also contain deep permafrost
carbon deposits and store 96± 55GtC (Strauss et al., 2017). Additional carbon pools might
exist in deep permafrost sediments outside the yedoma region, potentially containing another
∼ 400GtC, while subsea continental shelves below the Arctic Ocean contain an uncertain
amount of carbon (Schuur et al., 2015). It must be noted, that the estimate for carbon stored
within the upper 3 m includes carbon stored within this depth range from the yedoma region
and Arctic river deltas.

Arctic amplification is causing temperatures in the Arctic region to rise about twice as fast as
the global average temperature, making this region especially vulnerable to global warming
(Schuur et al., 2015). Anthropogenic warming is already observable in permafrost soils, with a
warming of 0.39± 0.15°C near the depth of zero annual temperature cycle over the 2007-2016
period (Biskaborn et al., 2019). Rising permafrost temperatures cause increased thawing
of permafrost soils, which makes the stored SOC vulnerable to microbial decomposition
(Elberling et al., 2013) (increase in Rhet) and is expected to increase GHG emissions from
permafrost soils, making permafrost regions a net source of carbon (Schuur et al., 2015). The
IPCC AR6 report assigned high confidence to the statement that some permafrost regions
are already a net source of carbon (Canadell et al., 2021). The increased GHG emissions
from permafrost soils, in turn, amplify global warming, resulting in a self-reinforcing positive
feedback loop, which might exhibit tipping point dynamics (Clarke et al., 2021).

Quantifying future carbon emissions from permafrost thaw is necessary to assess possible
reductions of carbon emission budgets. This is particularly interesting for overshoot scenarios,
as permafrost thaw is assumed to be irreversible on centennial timescales (Schuur et al., 2015).
However, modelling of permafrost soils remains highly challenging due to limited knowledge
and model representation of key drivers and relationships within the permafrost response to
global warming, with the main ones being discussed in the following.

Small-scale properties (O(10m)) like water saturation caused by the topography or snow
cover crucially determine the evolution of permafrost (Zhang et al., 2013). Waterlogged soils
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emit methane from anaerobic respiration of microbes, whereas dry soils emit comparably
higher levels of CO2 from aerobic respiration (Schuur et al., 2015). However, most land
surface models (e.g., Schneider von Deimling et al., 2015; Comyn-Platt et al., 2018), and
especially ESMs do not resolve topography on these scales due to computational limitations
(Zhang et al., 2013), which causes the relative contribution of CO2 and CH4 to permafrost
carbon emissions to be poorly constrained (Canadell et al., 2021).

Furthermore, the decomposition rate of SOC from thawing permafrost depends on microbe
activity, which might lead to complete decomposition of the stored SOC on a much shorter
timescale (O(10 years)) than expected in ESMs (compare Oechel et al., 2000; Burke et al.,
2017).

Another key process leading to uncertainties in permafrost modelling are peatland fires, which
can lead to a rapid release of carbon from permafrost peatlands to the atmosphere and warm
the permafrost soils below the peat (Hugelius et al., 2020).

Additionally, the response of vegetation in the permafrost region to warmer temperatures
and less permafrost soils is highly uncertain (McGuire et al., 2018), making it hard to predict
whether the amount of carbon emitted from the soil could be offset by a more productive
vegetation or not. Such an increase in vegetation productivity is associated with northward
expansion of boreal forests, which is also assumed to include tipping points and is discussed in
Sec. 1.2.3. Due to the additional uncertainties introduced by vegetation and to avoid overlaps
with the northward expansion of boreal forests, this study and all estimates of permafrost
carbon emissions cited therein do not include carbon uptake or release by vegetation.

Despite the high uncertainties involved in predicting permafrost thaw, consensus exists that
it is governed by gradual and abrupt thaw processes (Canadell et al., 2021; Turetsky et al.,
2020; Schuur et al., 2015). Additionally, collapse of permafrost might be possible in some
regions (Armstrong McKay et al., 2022; Lenton, 2012). In the following, we discuss those
three thaw processes, possible associated tipping points and the expected carbon losses.

Gradual Thaw

Rising temperatures in the northern permafrost region lead to a deepening of the active layer
into perennially frozen permafrost layers, increasing the amount of thawed SOC and the
length of the thawing period (Canadell et al., 2021). This gradual thawing of permafrost
affects the surface of the frozen ground and slowly penetrates downwards (O(10−2m yr−1)
(Turetsky et al., 2019).

In their recent literature review, Armstrong McKay et al. (2022) classify gradual thaw of
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boreal permafrost as a threshold-free feedback (high confidence), becoming widespread at
global warming of 1.5 °C (1 to 2.4°C) (high confidence) with carbon emissions of 20GtC ◦C−1

in 2100 and 50GtC ◦C−1 in 2300 up to a maximum of 260GtC (medium confidence), occurring
over a timescale of 300 years (100 to >300 years) (medium confidence).

Abrupt Thaw

Parts of the northern permafrost region are susceptible to localized abrupt thawing processes,
happening on a timescale of days or weeks, affecting several meters of the permafrost column
(Turetsky et al., 2019). Abrupt thaw is caused by thermokarsts, the process of thawing
ice-rich permafrost soils causing land-subsidence which results in the development of distinct
landforms, further amplifying permafrost thaw or erosion (Olefeldt et al., 2016). Unlike
gradual thaw, abrupt thaw of permafrost occurs at a natural baseline rate independent of
global warming (Turetsky et al., 2020). Thermokarst landforms and areas susceptible to
thermokarst development cover ∼ 20% of the northern permafrost region (Olefeldt et al.,
2016).

Three broad categories of thermokarst landscapes can be classified (Olefeldt et al., 2016):

• Wetland thermokarst landscapes including landforms such as thermokarst bogs, fens, or
shore fens (Jorgenson, 2013; Kokelj and Jorgenson, 2013).

• Lake thermokarst landscapes including landforms such as shallow, deep, and glacial
thermokarst lakes and thermokarst lake basins (Jorgenson, 2013; Kokelj and Jorgenson,
2013). These landforms mark different states in the life-cycle of thermokarst lakes, which
are characterized by initiation, expansion, drainage, and drainage basin development.

• Hillslope thermokarst landscapes including landforms such as active layer detach-
ment slides, retrogressive thaw slumps, thermal erosion gullies, beaded streams, and
thermokarst water tracks (Jorgenson, 2013; Kokelj and Jorgenson, 2013).

Which landform develops after a thermokarst depends on the prevailing conditions at the
site (Olefeldt et al., 2016).

As abrupt thaw of boreal permafrost (PFAT) is expected to happen localized but near-
synchronously on a subcontinental scale, Armstrong McKay et al. (2022) classify it as a
regional impact tipping point (medium confidence), amplifying carbon emissions from gradual
thaw by 25− 75% up to 60− 195GtC (medium confidence) with a threshold temperature
of 1.5°C (1 to 2.3°C) (medium confidence) over a timescale of 200 years (100 to 300 years)
(medium confidence). Furthermore, the timescale of tipping is assumed to be partially
rate-dependent, with higher exceedance of the threshold temperature leading to shorter a
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timescale.

Permafrost Collapse

Collapse of permafrost can be caused by permafrost degradation becoming self-perpetuating
due to the heat released by microbial respiration of SOC, leading to further thaw of permafrost
and resulting in a positive feedback loop, which is referred to as the “compost bomb instability”
(Luke and Cox, 2011). This process might occur in the yedoma region or in abruptly dried
permafrost soils (Armstrong McKay et al., 2022).

The yedoma region in Siberia and Alaska includes the thickest permafrost soils, reaching
thicknesses of up to 50 m (Schirrmeister et al., 2013). These deposits consist of carbon- and
ice-rich loess and fluvial reworked sediments (Van Huissteden, 2020, p. 32). While covering
only 7% of the permafrost area (Hugelius et al., 2014), the yedoma region contains about
33% of the total carbon stored in northern permafrost soils (compare estimates of carbon
pools above) and ground ice can occupy up to 80% of the ground volume (Schuur et al.,
2015). Since SOC in yedoma and thermokarst deposits is partly in low-decomposition state
(Strauss et al., 2015), it is highly vulnerable to microbial decomposition (Strauss et al., 2017).
This vulnerability is further amplified by the high ground-ice content, making thermokarst
processes likely.

The compost bomb instability could also be triggered in permafrost soils with reduced soil
moisture, causing suppressed heat conductivity (Luke and Cox, 2011). Abrupt drying of
permafrost soils creating such conditions has been found to occur in 2.2 million km2 if global
warming exceeds 4°C (Teufel and Sushama, 2019).

Armstrong McKay et al. (2022) classify boreal permafrost collapse (PFTP) due to compost
bomb instabilities in both the yedoma region and abruptly dried permafrost soils as a global
core tipping point (low confidence). Carbon emissions of 125 to 250 GtC (low confidence) are
expected to be released over 50 years (10-300 years) (medium confidence) after a threshold
temperature of 4°C (3 to 6°C) (low confidence) is crossed. The timescale of tipping is assumed
to be partially rate-dependent.

1.2.2 Amazon Rainforest

The Amazon rainforest (AMAZ) is the world’s largest tropical forest, covering most of the
Amazon basin and expanding over an area of 7.25 · 106 km2 (Gatti et al., 2021). It is a
highly complex ecosystem which is to a large degree self-sustaining. Also, it is home to
a remarkable share of global biodiversity, with more tree-species being found in 10.000m2

than in the whole of Europe (Dirzo and Raven, 2003; Gentry, 1988). Furthermore, the
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Amazon is an integral component of the Earth’s carbon cycle, accounting for around 16% of
terrestrial productivity (Science Panel for the Amazon, 2021) and acting as a carbon sink in
the past, storing about 0.54 GtCyr−1 in the 1990s (Brienen et al., 2015). Sequestration of
atmospheric carbon led to the formation of a total carbon pool of 150–200 GtC stored in
the soils and vegetation of the Amazon rainforest (Gatti et al., 2021; Science Panel for the
Amazon, 2021). However, the nature of the Amazon carbon pool is fundamentally different
to the one found in permafrost regions, where most carbon is stored in the soils (Sec. 1.2.1).
Tropical rainforests are generally characterized by high GPP but also high losses of organic
carbon due to respiration and leaching, which results in the majority of the organic carbon
being stored in the living biosphere rather than in the soils (Chapin 3. et al., 2002). In
2007, around 70% of the total carbon stored in America’s rainforest were contained in living
biomass, deadwood and litter, and only 30% were stored in the soils (Pan et al., 2011).

Several biogeophysical processes between the biosphere and atmosphere in the Amazon secure
the existence of the forest (Science Panel for the Amazon, 2021). Some of the most essential
ones are hydraulic redistribution of water from deep-rooted trees to shallow-rooted plants,
a decrease of land surface temperature by evapotranspiration and the recycling of rainfall
by trees, where trees transpire rainwater back to the atmosphere (Science Panel for the
Amazon, 2021). On average, around 32% of the Amazonian rainfall originates from the
basin (Staal et al., 2018). These biogeophysical processes are vital to secure the wet climate
the forest needs to exist, especially during the dry season (Science Panel for the Amazon,
2021). Tree loss due to climate change or deforestation is considered to interrupt those
self-sustaining biogeophysical processes. This would destabilize the Amazon rainforest and
potentially trigger a positive feedback, which could tip the forest into a highly degraded state
and turn it from a carbon sink into a carbon source (Nobre et al., 2016; Science Panel for the
Amazon, 2021). Forest-fire-feedbacks could accelerate this degradation, as an open canopy
allows for greater solar heating and air movement which dries out forest fuels, making them
more susceptible to fire (Cochrane et al., 1999).

Impacts of deforestation and global warming on the Amazon rainforest are already observable.
Recent aircraft measurements show that the southeast of the Amazon has already become a
net carbon source (Gatti et al., 2021). This degradation might accelerate since the resilience
of two thirds of the forest is decreasing since the early 2000s, as shown by the evaluation of
remotely measured vegetation optical depth (Boulton et al., 2022). Currently, ∼ 40% of the
Amazon forest is estimated to be in a bistable state, and this area is projected to increase
under continued global warming (Staal et al., 2020).

Synthesizing the literature, Armstrong McKay et al. (2022) classify the Amazon forest as a
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global core TE (medium confidence) with a threshold temperature of 3.5°C (2 to 6°C) (low
confidence) independent of deforestation. They estimate the timescale to be 100 years (50 to
200 years) (low confidence) and carbon emissions of 30 GtC for a partial dieback (40%) and
75GtC for a total dieback of the Amazon rainforest (medium confidence). The timescale is
again assumed to be partially rate-dependent.

1.2.3 Boreal Forests

Forests within the boreal zone encompass almost 30% of the global forest area and store
272 ± 23GtC of carbon, of which 60% is stored in the soil, 20% in biomass, and the rest
in deadwood and litter (Crowther et al., 2015; Pan et al., 2011). If soil carbon is excluded,
boreal forests make up for about 20% of the total carbon sequestered by global forests. (Pan
et al., 2011; Gauthier et al., 2015). As boreal forests are in part growing on permafrost
soils (Gauthier et al., 2015), the estimate for carbon stored in boreal forest soils is partially
included in the permafrost carbon pool. Besides of functioning as a major carbon pool,
boreal forests impact the global climate via their albedo and the soil moisture recycling.
In the winter, the low albedo trees “mask” the high albedo snow surfaces and do thereby
lead to a warmer climate, whereas in summer, boreal forests cool the climate via enhanced
evapotranspiration (Bonan, 2008). Adding to the importance of boreal forests, they are
widely used for wood production, with 33% of the global production of sawn wood and 25%
of paper originating from boreal forests (Burton, Philip J. et al., 2010).

Based on satellite observations, three alternative modes in the frequency distribution of
boreal tree cover have been identified: a treeless state, an open woodland state and a closed
forest state (Scheffer et al., 2012). Intermediate tree covers are relatively rare, which leads to
the hypothesis of the modes being stable states of boreal forests whereas the intermediate
tree covers are unstable. Transitions between the different stable tree cover states might
therefore be abrupt rather than gradual as assumed by most current dynamic vegetation
models (Scheffer et al., 2012; Euskirchen et al., 2009). Hence, tipping points within the
boreal forest might exist, even though the governing mechanisms are not well understood yet
(Scheffer et al., 2012; Abis and Brovkin, 2017). Armstrong McKay et al. (2022) distinguish
between southern dieback and northern expansion of boreal forests, which are both assumed
to feature tipping points.

Southern Dieback

Global warming is thought to destabilize the southern edge of the boreal forest, creating a
tipping point, after which abrupt dieback of the forest might occur (Armstrong McKay et al.,
2022). Forest fires are expected to be a dominant driver of these dynamics (Scheffer et al.,
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2012). As for tropical forests, flammability of the boreal forests is increasing with decreasing
tree cover, leading to a runaway feedback toward a treeless state. This inverse proportionality
between flammability and tree cover is caused by the increased amount of light that is able
to penetrate more open forests which leads to the increased development of lower branches,
serving as ladder fuels in the case of a fire, and by increased drying of understory mosses
due to exposure to wind and light (Ryan, 2002). Additional drivers of boreal forest collapse
include insect outbreaks, windfall, and browsing (Scheffer et al., 2012).

In their extensive literature review, Armstrong McKay et al. (2022) classify abrupt dieback
of boreal forests (BORF) as a regional impact tipping element (medium confidence) with
a threshold temperature of 4°C (1.4 to 5°C) (low confidence), occurring on a timescale of
100 years (minimum 50 years) (low confidence). They expect 52GtC to be emitted by
partial (50%) dieback of boreal forests. However, counteracting biogeophysical effects such
as increasing albedo would lead to a negative feedback on GMST of −0.18°C (medium
confidence).

Northern Expansion

At the northern edge of boreal forests, low temperatures and permafrost soils are limiting
factors of tree growth. However, thawing of permafrost soils and a lengthening of the growing
season due to global warming are expected to enable initial tree growth in these regions
according to Scheffer et al. (2012). They further assume that via a decrease in albedo and an
increase in wildfire frequency, trees would then increase the heat input to soils, resulting in a
positive feedback causing abrupt forestation of former tundra regions.

Northern expansion of boreal forest (TUND) is thus classified as a regional impact TE
(medium confidence) with a threshold temperature of 4°C (1.5 to 7.2°C) (low confidence) and
a timescale of 100 years (minimum 40 years) (low confidence) (Armstrong McKay et al., 2022).
The associated carbon uptake is estimated to be 6GtC with counteracting biogeophysical
effects such as albedo decrease and enhanced evapotranspiration, leading to a total feedback
of +0.14°C on GMST (low confidence). It must be noted that these estimates do not include
carbon released from thawing permafrost within this region.

Given the impact estimates by Armstrong McKay et al. (2022), northern expansion of boreal
forests would nearly balance their southern dieback in therms of GMST increase, even though
there is an emission gap of 46GtC. The IPCC suggest, that this difference between carbon
emissions from southern dieback of boreal forests and sequestered carbon from their northern
expansion is approximately zero (Canadell et al., 2021).
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1.2.4 Sahel and West African Monsoon

The Sahel region lies between the southern edge of the Sahara and the humid savanna
woodland at roughly 10°N, and spans from the coasts of Mauritania and Senegal to the
western parts of the Sudan (Nicholson, 2018). The Sahel is characterized by a semi-arid
climate, allowing for the growth of grasslands, shrubs, and small trees. Even though it is
home to some large cities such as Dakar and Bamako, most of the population lives in rural
areas, practising agriculture. Hence, they strongly depend on the local climate.

The climate and hydrology of the Sahel region are primarily governed by the West African
monsoon (WAM) system (Pausata et al., 2020). The WAM is broadly characterized by moist
south-westerly winds transporting moisture from the ocean to the land during the boreal
summer and dry north-easterly winds during the boreal winter. Especially between mid-July
and September, the rainfall peak is established in the Sahel region (Thorncroft et al., 2011).
Like other monsoon systems, the WAM is driven by the thermodynamic contrast between
the land (Sahara and Sahel) and the sea (Tropical Atlantic) (Pausata et al., 2020).

Changes in the intensity of the WAM had severe impacts on the Saharan and Sahel hy-
droclimate in the past. The Saharan desert has experienced over 230 wet periods with
a more vegetated landscape called green Sahara periods (GSPs) in the past eight million
years, associated with a stronger WAM (Larrasoaña et al., 2013). During those periods, the
increased WAM led to more intense summer rainfalls in the Sahel and the Sahara, enabling
the northward migration of vegetation into the desert (Pausata et al., 2020). The GSPs were
initially triggered by enhanced solar radiation due to the variations in the Earth’s orbital
parameters, with a number of feedbacks amplifying this effect, leading to an abrupt onset of
the GSPs (Pausata et al., 2020). The most prominent feedbacks in this regard are associated
with an increase in albedo and a decrease in dust-emissions due to enhanced vegetation. Both
processes lead to increased radiative forcing over the newly greened land areas, enhancing
the monsoonal circulation (Gaetani et al., 2017).

Although the increased long-wave radiative forcing due to the emission of anthropogenic
GHGs is qualitatively different from the increase in solar radiation triggering GSPs in the
past, evidence exists that abrupt greening of the Sahara and the Sahel might also happen
under continued global warming. In general, global climate models from CMIP5 and CMIP6
and the regional downscaling model CORDEX predict a strengthening of the WAM, causing
wetting and northward expansion of the central and eastern Sahel (Dosio et al., 2021). The
increased precipitation in those areas allows for a self-amplifying greening, as found by
regional dynamic vegetation models (Erfanian et al., 2016).

Given the evidence from paleoclimatic records and modelling studies, Armstrong McKay
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et al. (2022) classify the Sahel vegetation and WAM (SAHL) as a regional impact TE (low
confidence) with abrupt wetting and greening happening at a threshold of 2.8°C (2 to 3.5°C)
(low confidence) over a timescale of 50 years (10 to 500 years) (low confidence).

1.2.5 Low-Latitude Coral Reefs

Reef-building corals only exist within a narrow range of environmental conditions occurring
in tropical coastal areas, characterized by shallow, alkaline waters and abundant sunlight
(Frieler et al., 2013). Globally, nearly 500 million people depend on coral reefs for food,
coastal protection, cultural items, and tourism income, with approximately 30 million of the
poorest people depending entirely on coral reefs for food as stated by Wilkinson, C. (2004),
who furthermore explain, that coral reefs significantly contribute to biodiversity by providing
habitat to over a million species.

Corals depend on the symbiosis with photosynthetic dinoflagellates, where inorganic waste
metabolites from the coral are exchanged for organic nutrients from dinoflagellate photo-
synthesis (Stat et al., 2008). Rising oceanic temperatures together with ocean-acidification
caused by anthropogenic GHGs lead to the sudden elimination of the dinoflagellates, which,
if the symbiosis does not recover, causes the dead of the concerned coral (Douglas, 2003).
This process is referred to as “coral bleaching” since the colour of the corals results from the
dinoflagellates who expose the white calcium carbonate skeleton of the coral once they die.

Coral reefs are one of the most vulnerable ecosystems to climate change. Since the 1950s, the
global coverage of living corals has declined by half, catches of coral-reef-associated fishes
have declined despite increasing fishing efforts, and the coral-reef-associated biodiversity has
declined by at least 63% (Eddy et al., 2021). Model studies suggest that coral reefs will
further decline under continued anthropogenic warming (Frieler et al., 2013; Hughes et al.,
2017).

Given that coral bleaching happens regionally synchronized (as seen for the Great Barrier
Reef), Armstrong McKay et al. (2022) classify warm-water coral reefs (REEF) as a regional
impact TE (high confidence) with an estimated threshold temperature of 1.5°C (1 to 2°C)
(high confidence), occurring over a timescale of ∼ 10 years (medium confidence).

1.2.6 Greenland Ice Sheet

The Greenland ice sheet (GRIS) covers most of Greenland and is the globally second-biggest
ice sheet after the Antarctic ice sheet, which together contain about 99% of the Earth’s
freshwater ice (Elias, 2021). Nearly all of GRIS (98%) is grounded with a bed above sea level
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and would therefore directly contribute to sea level rise if melted, which results in a total sea
level equivalent (SLE) (the amount global mean sea level (GMSL) would rise in case of total
melt) of 7.42± 0.05 m (Morlighem et al., 2017).

The rate of change of GRIS is described by its mass balance (MB) which is given by the
difference in surface mass balance (SMB) and solid ice discharge across the grounding line
(D) (Noël et al., 2021):

MB = SMB −D. (1)

The SMB, in turn, is defined as the difference between accumulation from precipitation (snow
and rain) and mass loss from ablation (sublimation, drifting snow erosion and runoff) (Khan
et al., 2015).

The two main positive feedbacks that might produce a tipping point after which irreversible
loss of the GRIS occurs, are the elevation and the albedo-climate feedback (Robinson et al.,
2012). The elevation feedback arises due to thinning of the ice sheet, lowering the ice
surface and exposing it to higher temperatures, which leads to increased surface melt and
therefore increased thinning. As ice sheets cover less of the land surface which typically has
a lower albedo, local warming increases, causing further ice sheet melt, which is termed the
albedo-climate feedback. Furthermore, the marine terminating outlet glaciers of the GRIS
might be affected by marine ice sheet instability (MISI) (Khan et al., 2020) and marine
ice cliff instability (MICI) (Jakobsson et al., 2018). In brief, MISI can be explained by the
observation that ice flux increases with ice thickness, hence, if the ice sheet thins, becomes
afloat and the grounding line retreats inland towards higher ice thickness, which is increasing
towards the land interior if the ice sheet bed is retrograde sloped, ice flux towards the ocean
increases and the grounding line retreats further (Pattyn, 2018). Therefore, grounding lines
located on retrograde slopes, i.e., a terrain that deepens toward the land interior, are unstable
and can result in a positive feedback of self-reinforcing ice-loss. MICI is associated with a
collapse of buttressing ice shelves connected to the glacier. If those ice shelves collapse due
to processes such as sub-shelf melting or hydro-fracturing, the ice cliff of the glacier might
become unstable and fall down if higher than ∼ 90 m above sea level (Pattyn, 2018). As
outlet glaciers are retreating with global warming until GRIS becomes fully grounded, which
might happen within a few centuries under high emission scenarios (Aschwanden et al., 2019),
the surface mass balance-elevation feedback will be crucial as the MB is determined solely by
SMB with D = 0 (Noël et al., 2021).

GRIS is characterized by a negative MB since the 1980s, with on average 51± 17 Gt yr−1

being lost during the 1980-1990 period, which has increased to 286± 20 Gt yr−1 until the
2010-2018 period (Mouginot et al., 2019). Part of this development can be explained by a
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step-increase in D during the early 2000s, which corresponds to widespread retreat of marine
terminating glaciers (King et al., 2020). For some major glaciers, this retreat can be linked
to MISI (Khan et al., 2020) or MICI (Jakobsson et al., 2018). Ice loss from GRIS since 1972
caused GMSL rise of 13.7± 1.1 mm, making it the largest single contributor to sea level rise
(Mouginot et al., 2019; King et al., 2020).

GRIS will continue to shrink throughout the next millennium. Even under the low emission
scenario RCP2.6, an additional 5 − 19 cm sea level rise is expected from GRIS in 2100
relative to 2008, increasing to 59− 191 cm in 3000 (Aschwanden et al., 2019). Under the high
emission scenario RCP8.5, those numbers increase to 14−33 cm and 538−728 cm respectively,
underlining that GRIS loss will happen on a millennial timescale. Threshold temperatures
after which GRIS loss becomes irreversible have been found in multiple modelling studies
(Van Breedam et al., 2020; Robinson et al., 2012). Additional evidence for tipping dynamics
of the GRIS comes from paleorecords which indicate that Greenland has been ice free during
the interglacial period marine isotope stage 11 (Christ et al., 2021).

As GMSL rise from GRIS collapse would impact coastal regions globally, Armstrong McKay et
al. (2022) categorize GRIS as a global core TE (high confidence) with a threshold temperature
of 1.5°C (0.8 to 3°C) (high confidence), occurring over a timescale of 10 kyr (1 to 15 kyr)
(medium confidence).

1.2.7 West Antarctic Ice Sheet

The West Antarctic ice sheet (WAIS) stores a SLE of 4.3m, of which ∼ 80% is attributed
to ice grounded with a bed below sea level (Fretwell et al., 2013). Therefore, and since it is
attached to floating ice shelves at the grounding line, it is classified as a marine ice sheet
(Arthern and Williams, 2017).

For the MB of WAIS, eq. 1 holds as well as for GRIS, however, expected ice loss from WAIS
due to global warming is associated with a high D rather than a negative SMB. This is due
to the fact that vast amounts of WAIS are grounded on retrograde slopes below sea level,
which can cause MISI (Weertman, 1974; Schoof, 2007). Furthermore, MICI might cause
abrupt retreat of WAIS marine terminating glaciers and has the potential to trigger MISI
(Pattyn, 2018). However, the significance of this process for future ice loss from the WAIS is
disputed (Edwards et al., 2019).

The WAIS is already loosing mass. Between 1992 and 2017 it has contributed 5.7± 0.8 mm

to GMSL rise (Shepherd et al., 2019). Glaciers draining the Amundsen sea sector of the
WAIS that are grounded on retrograde slopes are already undergoing MISI and retreating,
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and no major bed obstacles that could prevent further MISI are found (Rignot et al., 2014).

The future development of WAIS introduces deep uncertainties to the projections of GMSL.
Under RCP8.5, depending on the degree of its disintegration, WAIS could add between zero
(no collapse) up to 3.3m (full collapse) to GMSL until 2100 (Bakker et al., 2017). Most
model studies indicate long-term partial collapse of WAIS, even under present warming
levels or slightly above (Arthern and Williams, 2017; Garbe et al., 2020). This hypothesis
is also supported by paleoclimatic records, which show partial loss of WAIS during the last
interglacial (Turney et al., 2020).

Given the global impacts of GMSL rise due to potential WAIS collapse, Armstrong McKay
et al. (2022) classify WAIS as a global core TE (high confidence), associated with a threshold
temperature of 1.5°C (1.0 to 3.0°C) (high confidence), occurring over a timescale of 2 kyr
(0.5 to 13 kyr) (medium confidence).

1.2.8 East Antarctic Ice Sheet

The East Antarctic ice sheet (EAIS) is by far the largest ice sheet globally, as it stores a
SLE of 53.3m, with most of the ice of being grounded with a bed above sea level (64% of
SLE) (Fretwell et al., 2013). The marine part of the EAIS mainly consists of three subglacial
basins, which are discussed below. Here, we focus on the “terrestrial” parts of the EAIS
grounded on land above sea level, which are referred to as EAIS in the following, consistent
with Armstrong McKay et al. (2022).

Due to the terrestrial nature of the EAIS, the dominant positive feedbacks that might
constitute a tipping point for EAIS collapse are the elevation and the albedo feedback (Sec.
1.2.6) (Robinson et al., 2012; Garbe et al., 2020).

Recent changes of the EAIS mass remain uncertain, with negative and positive trends being
supported by observations (Stokes et al., 2022). On the one hand, Wang et al. (2021) and
Shepherd et al. (2019) report that the EAIS including the subglacial basins is gaining mass in
recent decades which can be related to extreme snowfall events over EAIS, causing a positive
SMB (Boening et al., 2012). On the other hand, Rignot et al. (2019) observe a negative mass
balance of the EAIS including subglacial basins, yielding GMSL rise of 4.4± 0.9 mm between
1979 and 2017.

Paleorecords and models indicate a strong hysteresis effect of the EAIS, where multiple states
of the ice sheet are possible under the same environmental boundary conditions, with the ice
sheet becoming stable once it reaches continental scales (Garbe et al., 2020; Gasson et al.,
2016). This stability explains the observation from paleorecords that the EAIS has only
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partially melted partly during the Mid-Miocene climate optimum (17.0 – 14.8 Myr BP) with
atmospheric CO2 concentrations around 600 to 800 ppm (Stokes et al., 2022). However, model
results show that the amount of committed ice loss from the EAIS significantly increases
beyond 6°C, mainly due to the elevation feedback (Garbe et al., 2020).

Due to the massive impact EAIS collapse would have on the GMSL, Armstrong McKay et al.
(2022) classify it as a global core TE (medium confidence) with a threshold temperature of
7.5°C (5 to 10°C), occurring over a timescale ≥ 10 ky (medium confidence).

1.2.9 East Antarctic Subglacial Basins

A major fraction of the 19.2 m of SLE stored in marine parts of the EAIS with a bed below
sea level can be attributed to the three main East Antarctic subglacial basins (EASBs): the
Wilkes, the Aurora, and the Recovery basin (Fretwell et al., 2013; Stokes et al., 2022).

As for the WAIS, the beds of the EASBs are often retrograde sloped, making them vulnerable
to MISI (Mengel and Levermann, 2014). Additionally, MICI might occur once buttressing
ice shelves disappear (DeConto et al., 2021).

Even though the mass change of the EAIS including the EASBs remains somewhat uncertain
(Sec. 1.2.8), the EASBs considered individually are already loosing mass (Stokes et al., 2022).
The mass loss from the East Antarctic region reported by Rignot et al. (2019) causing GMSL
rise of 4.4± 0.9 mm between 1979 and 2017 is mainly produced by ice loss from the Wilkes
subglacial basin.

Paleorecords indicate ice retreat in the Wilkes subglacial basin during the interglacial intervals
of the late Pleistocene (e.g., 130 – 80 kyr BP for the last interglacial) when Antarctic air
temperatures were at least two degrees higher than pre-industrial temperatures over 2500
years or more (Wilson et al., 2018). For the future development of EASBs, coupled ice-
sheet/ice-shelf model experiments predict that substantial ice loss from the Wilkes and the
Aurora subglacial basin will unfold over the next three millennia under RCP8.5 (Golledge
et al., 2015).

Given that the collapse of EASBs could cause sea level rise with the same order of magnitude
as GRIS or WAIS, Armstrong McKay et al. (2022) classify EASBs as a global core TE (high
confidence) with a threshold temperature of 3°C (2 to 6°C) (medium confidence), unfolding
over a timescale of 2 kyr (500 y to 10 kyr) (medium confidence).
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1.2.10 Arctic Sea Ice

The Arctic Ocean is covered by a layer of sea ice which typically reaches its maximum extent
in March (mean of 15.43 · 106 km2 for the 1981-2010 period), melts throughout summer, and
reaches the minimum extent in September (mean of 6.41 · 106 km2 for the 1981-2010 period)
(Stroeve and Notz, 2018). Arctic sea ice plays a crucial role in regulating the exchange of
momentum, heat, and moisture between the atmosphere and the polar oceans and impacts
the ocean salinity. Furthermore, Arctic sea ice provides a habitat for many adapted species,
from ice algae to polar bears, and regulates local biochemical cycles by influencing the transfer
of radiation, gas, and fluids between the atmosphere and the ocean (Meier et al., 2014).
Arctic sea ice also plays a major role in the life of local communities who depend on sea ice
e.g., for transportation and hunting, with about four million people living in the Arctic, of
whom ∼ 10% are indigenous (Arctic Council, 2023).

The most important positive feedback associated with abrupt sea ice loss is the ice-albedo
feedback (e.g., Hankel and Tziperman, 2021). Due to initially declining sea ice extent in
summer, the ocean absorbs more SW radiation as high-albedo sea ice is gone and heats
up with the heat being released to the atmosphere in autumn and winter, prohibiting sea
ice growth. The ice-albedo feedback is assumed to be one of the reasons for the Arctic
amplification of global warming (Serreze et al., 2009).

Arctic sea ice loss is already evident, with 10.6% of winter sea ice extent and 45.2% of summer
sea ice extent lost in 2018 compared to the 1979-1989 period (Stroeve and Notz, 2018).

Arctic Winter Sea Ice

While the retreat of Arctic summer sea ice is assumed to happen linearly (Notz, 2009), some
GCMs predict an abrupt decrease in Arctic winter sea ice (AWSI) (Drijfhout et al., 2015;
Hezel et al., 2014), which points towards a tipping point for AWSI loss.

Several positive feedbacks have been discussed which could explain those tipping dynamics,
mostly more specified versions of the ice-albedo feedback explained above. One mechanism
that is assumed to play a major role is the formation of convective clouds during autumn and
winter due to heat and moisture release from the ocean to the lower atmosphere, which leads
to an increased downward reflection of LW radiation, prohibiting sea ice growth (Arnold
et al., 2014). However, the differences in AWSI decline between GCMs can also be explained
without convective clouds but with different amounts of clear sky downward LW radiation
in autumn and winter due to a warmer and more moist lower atmosphere (Hankel and
Tziperman, 2021).

While there is agreement between GCMs from CMIP6 that AWSI will decline in response to
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anthropogenic GHG emissions, the magnitude and timing of this decline is still uncertain
(Notz and Community, 2020). Under RCP8.5, GCMs predict that AWSI might disappear
completely before 2300 (Hankel and Tziperman, 2021).

As AWSI impacts the Earth system beyond the Arctic, Armstrong McKay et al. (2022)
classify it as a global core TE (medium confidence) with a threshold temperature of 6.3°C (4.5
to 8.7°C) (high confidence) and a timescale of 20 years (10 to 100 years) (high confidence).

Barents Sea Winter Ice

The abrupt loss of Barents Sea winter ice (BARI) is considered to be a subcase of AWSI
collapse (Armstrong McKay et al., 2022). With a mean extent of 961 · 103 km2 in March
during the 1979 – 1989 period (calculated from numbers in Tab. 2 of Stroeve and Notz
(2018)), BARI only makes up for about 6% of the total AWSI. However, loss of BARI would
influence for European weather and potentially the AMOC (Smedsrud et al., 2013).

Like AWSI, BARI is already in decline. However, BARI loss is happening much faster than
AWSI loss: 47.2% of the average BARI extent between 1979 and 1989 has been lost in 2018,
compared to only 10.6% for AWSI (Stroeve and Notz, 2018).

The rapid decline of BARI in recent decades can be linked to increased inflow of warm
Atlantic water into the Barents Sea that is self-reinforcing via atmospheric and oceanic
positive feedbacks (Smedsrud et al., 2013).

Extrapolating the observed trend of BARI loss results in a year round ice-free Barents Sea
between 2023 and 2036 (Onarheim and Årthun, 2017). However, BARI loss could also happen
abruptly, as found in two CMIP5 models (Drijfhout et al., 2015).

Armstrong McKay et al. (2022) classify BARI as a regional impact TE (medium confidence)
with a threshold temperature of 1.6°C (1.5 to 1.7°C) (low confidence) and a timescale of 25
years (low confidence).

1.2.11 Mountain Glaciers

About 8.9% of the global population lives in river basins that depend on mountain glacier
(GLCR) discharge for at least 5% of the total river discharge in the peak-melt month (Schaner
et al., 2012). The major share of this group lives in Asia (94%), some live in North and South
America (4.5%) and the rest lives in Europe (1.5%). Glacier retreat due to global warming
would negatively affect the freshwater availability within those river basins. Furthermore, a
decrease of glacier discharge would also affect hydropower production, aquatic ecosystems
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and sediment transport (Milner et al., 2017). Additionally, their meltwater adds to GMSL
rise (Levermann et al., 2012).

Similar to ice sheets, the albedo-climate feedback could speed-up the retreat of GLCR, which
in this case is further amplified by a decrease in snow precipitation and increased dust
accumulation on the ice, both lowering the glacier albedo (Levermann et al., 2012).

Most glaciers are already loosing mass since the middle of the 17th century, with mass loss
significantly accelerating since 1970 (Gulev et al., 2021), reaching the highest observed loss
rates in recent decades with 267± 16 Gt yr−1 being lost on average between 2000 and 2019
(Hugonnet et al., 2021). This means that even though glaciers only contain less than 1%
of the global frozen freshwater (Radić and Hock, 2011), they have been a major driver of
GMSL rise (Meier et al., 2007). Similar to ice sheets, glaciers are characterized by thermal
inertia and therefore a lagged response to global warming, meaning that they are committed
to further decline even if the warming levels would stabilize (Gulev et al., 2021).

The annual mean runoff from melting glaciers is typically described as a convex function
of time, with the maximum being referred to as “peak water”. Of 56 major global glacial
basins, roughly half have already passed their peak water and nearly all other basins will
follow within this century under RCP4.5 (Huss and Hock, 2018). Under RCP8.5, another
0.18m (0.15 to 0.2m) of GMSL rise is projected to be caused by melting glaciers until the
end of the century (Fox-Kemper et al., 2021).

Given that GLCR loss is projected to happen synchronously over subcontinental scales
with significant human impacts, Armstrong McKay et al. (2022) classify them as a regional
impact TE (medium confidence) with a threshold temperature of 2°C (1.5 to 3°C) (medium
confidence), occurring over a timescale of 200 years (50 years to 1 ky) (medium confidence).

1.2.12 Atlantic Meridional Overturning Circulation

Transporting water masses northward at the surface and southward at the bottom of the
Atlantic Ocean, the Atlantic meridional overturning circulation (AMOC) is a key global
circulation system (Boers, 2021). It influences the climate over the Atlantic and the adjacent
landmasses. Northern Europe is a prominent example, which benefits from the relatively
warm and wet climate caused by northward heat transport of the AMOC of ∼ 1 PW at 30°N
(Bryden and Imawaki, 2001). Due to its large scale impacts on the global climate, the AMOC
is assumed to act as a mediator between other TEs and could therefore play a major role
within tipping cascades.

In crude words, the two main drivers of the AMOC are wind-driven upwelling in the South
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Atlantic Ocean and density driven deep convection in the Nordic Seas and Labrador Sea
(Kuhlbrodt et al., 2007). The deep convection is to some degree self-sustained, as warm
water masses transported northwards near the surface loose heat and freshwater along the
way, resulting in cool and saline and hence dense water masses. Increased meltwater runoff
from GRIS would lead to a freshening of surface water masses and hence a reducing of their
density, which results in increased density stratification and could therefore prohibit deep
convection and slow down the AMOC (Lohmann and Ditlevsen, 2021).

Abrupt transitions to warmer (Dansgaard-Oeschger events) and colder climates (Heinrich
events) in the Northern Hemisphere during the last glacial period are associated with a
strong and a weak or even non-existent AMOC respectively, indicating AMOC bistability
(Rahmstorf, 2002; Brovkin et al., 2021).

Bistability of the AMOC has also been found in early box models (Stommel, 1961) and in
some AOGCMs (Hawkins et al., 2011). This bistability is not found in most ESM (Liu et al.,
2014), however, this might be due to model biases (Liu et al., 2017).

Evidence for the AMOC approaching a tipping point also comes from early warning indicators
derived from recent observations, which suggest that the AMOC has evolved from stable
conditions towards a tipping point over the course of the last century (Boers, 2021).

A shift from the current strong state of the AMOC to a weak state would have manifold
impacts on the global climate. Europe would experience cooling and a shift of precipitation
patterns, whereas the Antarctic region would warm (Jackson et al., 2015). Therefore, and
due to the mediating role of the AMOC between other TEs, Armstrong McKay et al. (2022)
classify the AMOC as a global core TE (medium confidence) with a threshold temperature
of 4°C (1.4 to 8°C) (low confidence), occurring over a timescale of 50 years (15 to 300 years)
(medium confidence).

1.2.13 North Atlantic Subpolar Gyre - Labrador and Irminger Sea Convection

The subpolar gyre (SPG) located south of Greenland is an integral part of the AMOC and
comprises deep convection sites in the Labrador and Irminger Sea, where deep waters are
formed (Buckley and Marshall, 2016). Shutting down this deep convection is assumed to be
related to a weak or even collapsed SPG and hence reduced northward heat transport within
the North Atlantic, leading to regional cooling (Caesar et al., 2018).

Cyclonic wind stress at the surface of the North Atlantic and buoyancy forcing is causing
the cyclonic circulation of the SPG with horizontally diverging currents in the middle of the
gyre, producing upward dooming isopycnals which are a preconditioning for deep convection
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(Sgubin et al., 2017). Since deep convection in turn causes higher mixed layer depths, a
strong SPG leads to increased mixed layer depths. As mixed layer depth affects the density
structure and thus the strength of the SPG, positive feedbacks between deep convection and
the SPG can arise, causing potential instability of the system (Sgubin et al., 2017; Born and
Mignot, 2012).

Contrary to the global warming trend, the region over the SPG has cooled in recent decades
(Keil et al., 2020), which is often linked to a weakening of the SPG (Swingedouw et al., 2021).
Weakening of the SPG is also predicted by some CMIP5 and CMIP6 models, even though it
generally remains a rare feature of them (Sgubin et al., 2017; Swingedouw et al., 2021).

Even though SPG collapse would probably affect the AMOC, Armstrong McKay et al. (2022)
consider it to be a distinct TE as it is governed by other feedback mechanisms and could
collapse much faster than the AMOC. The North Atlantic subpolar gyre with Labrador
and Irminger sea convection (LABC) is therefore classified as a global core tipping element
(medium confidence) with a threshold temperature of 1.8°C (1.1 to 3.8°C) (high confidence),
occurring over a timescale of 10 years (5 to 50 years) (high confidence).

1.3 Carbon Emissions from Carbon Tipping Elements

We limit our analysis of the impacts from carbon TEs to PFAT, PFTP and AMAZ. PFGT
is not considered, since it is classified as a threshold-free feedback by Armstrong McKay
et al. (2022) and does therefore not match the definition of a TE, which needs to include
a clear tipping point. Furthermore, a conceptual approach to model PFGT might not be
appropriate since more sophisticated modelling techniques such as ESMs and land-surface
models exist (e.g., Arora et al., 2020; Meinshausen et al., 2020). BORF and TUND are also
not included in our analysis, as the carbon emissions from BORF are assumed to be balanced
by TUND and invasion of temperate forests (Canadell et al., 2021). Therefore, we refer to
PFAT, PFTP, and AMAZ if we speak about carbon TEs hereafter. The estimates of carbon
emissions from the carbon TEs from Armstrong McKay et al. (2022) given in the sections
above are informed by numerous studies, which we explore in this section to understand the
rationale behind those estimates our analysis is largely based on.

1.3.1 Abrupt Permafrost Thaw

Since PFAT is highly dependent on small-scale features, e.g., topography, it is not included
in current ESMs, and it remains challenging to quantify the associated carbon emissions
(Turetsky et al., 2019). Current studies rely on simplistic inventory models (Turetsky et
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Table 1: Category, threshold, timescale, and impact of the TEs, reproduced from Armstrong
McKay et al. (2022). Colours of the second left column represent the Earth system domain of the
tipping point (blue = cryosphere, green = biosphere, orange = ocean/atmosphere). All other colours
represent confidence, with green = high confidence, yellow = medium confidence and red = low
confidence.
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al., 2020), expert elicitations (Schuur et al., 2015) or observation-based permafrost models
(Schneider von Deimling et al., 2015) and suggest that abrupt thaw can up to double carbon
emissions from PFGT (Turetsky et al., 2019). This estimate is partly due to the high share of
CH4 emissions from anaerobic respiration, accounting for ∼ 20% of the total carbon emissions
(Turetsky et al., 2020).

The expert judgment of cumulative carbon emissions from permafrost in 2100 under RCP8.5
in Schuur et al. (2015) is raised from ∼ 92GtC to 130 – 160 GtC if abrupt thawing processes
are included, giving an amplification of 58% (41 to 74%) of PFGT carbon emissions by
PFAT. There seems to be consensus that PFAT is simply amplifying PFGT carbon emissions,
meaning that PFAT carbon emissions are also linearly responding to global warming (Turetsky
et al., 2020; Turetsky et al., 2019).

Relying on this limited set of studies, Armstrong McKay et al. (2022) assume that PFAT is
amplifying carbon emissions from PFGT by 50% (25 to 75%).

1.3.2 Permafrost Collapse

Like PFAT, PFTP is also not represented by current ESMs due to the complexity involved
with it (Schneider von Deimling et al., 2015). The compost bomb instability hypothesis
mainly rests on the mathematical analysis of Luke and Cox (2011) and has been tested only
in a few model studies.

One of them has been conducted by Khvorostyanov et al. (2008), who found that 285GtC
can be released from the Yedoma region between 2300 and 2400 if PFTP is triggered with
mean emission rates of 2− 2.8 GtC yr−1, using a permafrost model that explicitly accounts
for microbial heat production. This is significantly higher than the 22.8 GtC of CO2 emissions
and 294 MtCH4 of CH4 emissions giving total carbon emissions of 23GtC that are released
from Yedoma deposits until 2300 under RCP8.5 reported by Schneider von Deimling et al.
(2015), who rely on a 2D model informed by current permafrost observations. This study also
suggests that CH4 emissions amplify the carbon emissions warming potential from Yedoma
deposits by 40%, which is included within the uncertainty range of additional warming caused
by CH4 emissions from PFGT of 35− 48%, for which 2.3% of the carbon is emitted as CH4

(Schuur et al., 2015). Therefore, we assume that 2.3% of the carbon from PFTP is emitted
as methane.

Armstrong McKay et al. (2022) also expect compost bomb instabilities to occur in the 2.2
million km2 of permafrost soils for which abrupt drying beyond 4°C of global warming is
expected (Teufel and Sushama, 2019), adding to the carbon emissions of PFTP.
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For their estimate of carbon emissions from PFTP, Armstrong McKay et al. (2022) expect that
25− 50% of the carbon from the Yedoma region and from the 2.2 million km2 of permafrost
soils subject to abrupt drying beyond 4°C would be released, giving total emissions of 125 to
250 GtC. However, due to the limited evidence this estimate is based on, PFTP estimates are
only given with low confidence, whereas impact estimates of PFGT and PFAT are given with
medium confidence (Tab. 1).

1.3.3 Amazon Rainforest

The main tool to predict carbon emissions from AMAZ are dynamic vegetation models, which
feature different dynamic vegetation carbon stocks. Dynamic vegetation models can either
be part of ESMs (Cox et al., 2000) or coupled to GCMs (Nobre et al., 1991) to explore
the response of AMAZ to global warming. A common critique of most dynamic vegetation
models is the under-representation of natural and anthropogenic forest fires, with only four
CMIP6 models explicitly representing fire (Sanderson and Fisher, 2020). Therefore, CMIP6
models might be undersensitive to AMAZ dieback. Furthermore, the chance for AMAZ
dieback is increased if anthropogenic deforestation is considered (Nobre et al., 2016). However,
this effect is neither accounted for in the modelling studies introduced in the following, nor
included in the estimates from Armstrong McKay et al. (2022) and therefore also not in our
analysis.

One of the first modelling studies which found that loss of AMAZ might be irreversible
is Nobre et al. (1991). Using a dynamic vegetation model coupled to a GCM, they found
that total deforestation of the AMAZ would lead to significantly increased mean surface
temperatures and a decrease in evapotranspiration and precipitation. In the south-eastern
region of the AMAZ, this was found to lead to climatic conditions in which a rainforest
could not exist any more, i.e., an irreversible loss of the rainforest. The first ESM featuring
a dynamic vegetation model which allows for changes in vegetation type and carbon pools
within the vegetation and the soil was used to investigate the response of the Amazon
rainforest to global warming (Cox et al., 2000; Cox et al., 2004). It predicts that under a
“business as usual” scenario, over the 21st century Amazonian temperatures would rise by
more than 9 °C together with a drop in rainfall by 64%, which leads to abrupt dieback of the
rainforest with 78% (35.6GtC) of AMAZ vegetation carbon and 72% (14.3GtC) of AMAZ
soil carbon being lost until 2100.

More recent studies show that the extreme dieback of the Amazon rainforest found by Cox
et al. (2004) is most likely unrealistic, since the model sensitivity of tropical land carbon to
climate change is too high compared to a constraint emerging from the measured sensitivity
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Figure 1: Likely range (66%), very likely range (90%) and median of the ECS and the TCR from
CMIP6 models (Meehl et al., 2020), the sixth report of the IPCC (Forster et al., 2021) and the
constrained parameter ensemble of FaIR (Leach et al., 2021).

of the annual growth rate of atmospheric CO2 to tropical temperature anomalies (Cox et al.,
2013; Wenzel et al., 2014). In the most recent ESMs containing dynamical vegetation which
have been included in CMIP6, localized abrupt dieback of the Amazon rainforest was found
in five out of seven models (Parry et al., 2022) under the 1pctCO2 run. However, these
dieback events do not lead to a significant reduction of carbon stored within the forest.

The estimated carbon emissions from AMAZ dieback by Armstrong McKay et al. (2022) are
based on the assumption that AMAZ would be degraded to secondary forest or savanna in
case of tipping. This degradation is assumed to affect between 40% and 100% of the AMAZ
region, with the lower bound defined by the currently bistable area of AMAZ found by Staal
et al. (2020). Based on estimates of the carbon storage within AMAZ compared to degraded
forest or savanna, this yields carbon emissions between 30 GtC and 75 GtC which only consist
of CO2.

1.4 Our Model Approach

To calculate whether a TE is triggered under a specific emission scenario, anthropogenic GHG
emissions need to be mapped to GMST, which can then be used to infer whether the TE is
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triggered by comparing GMST to the threshold temperature of the TE. To make a statement
about the probability of triggering a TE, several uncertainties need to be accounted for along
this calculation chain.

The uncertainty in long-term projections of GMST (climate projections) by GCMs can
be partitioned into three types of uncertainty: internal variability, model uncertainty and
scenario uncertainty (Hawkins and Sutton, 2009). Internal variability arises from the chaotic
nature of the climate system, causing uncertainty that stays constant over time. Model
uncertainty is caused by the limited prediction skill of GCMs due to incomplete knowledge
of the climate system and computational limitations. Scenario uncertainty stems from
incomplete knowledge of future GHG emissions. At the beginning of a model run, the total
uncertainty in GMST is manly comprised by internal variability and model uncertainty
(Lehner et al., 2020). Throughout the model period, the relative contribution of internal
variability to total uncertainty of vanishes, becoming negligible after roughly 40 years of
model lead time as model uncertainty and scenario uncertainty are increasing. Since the
increase in scenario uncertainty is higher than the increase in model uncertainty, the scenario
uncertainty is making up for the major share of total uncertainty towards the end of the
model period, causing roughly 60% of the total uncertainty after 80 years of model lead time.

We incorporate the scenario uncertainty by performing our analysis under five different
emission scenarios. Hereby, we rely on the shared socioeconomic pathways (SSPs) used in
CMIP6 (O’Neill et al., 2016). Each SSP describes an alternative possible evolution of human
society in absence of climate change or climate policy, and they are summarized by the names
sustainability, middle of the road, regional rivalry, inequality and fossil-fuel-development
(abbreviated by numbers from 1 to 5 in this order) (O’Neill et al., 2015). Each of these
scenarios has been shown to possibly lead to certain additional radiative forcings at the end
of the century (Riahi et al., 2016). The combinations of the SSP and the additional radiative
forcing at the end of the century that is possible under the respective SSP give the combined
names of the scenarios, with the first number encoding the SSP and the last numbers standing
for the quantity of additional radiative forcing at the end of the century in Wm−2. We use the
five high priority “Tier1” scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.

To map anthropogenic GHG emissions from the SSPs to GMST until the year 2500, we use
the second version of the Finite amplitude Impulse Response model (FaIR), a 0D reduced
complexity climate model developed by Leach et al. (2021).

Since it only represents globally averaged variables, FaIR is unable to reproduce the internal
variability of the climate system. However, since our model period is around 500 years long
and uncertainty from internal variability is becoming negligible after 80 years of model lead
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time compared to scenario uncertainty and model uncertainty (Lehner et al., 2020), we do
not regard this a major shortcoming of our model approach.

The model uncertainty of climate models can be specified by comparing the “forced response”,
i.e., the response to a given emission scenario, among several climate models (Lehner et al.,
2020). Common metrics to describe the forced response of climate models are the equilibrium
climate sensitivity (ECS) and the transient climate response (TCR). ECS is defined as
the long-term GMST increase arising from a doubling of atmospheric CO2 concentrations
compared to pre-industrial levels, whereas TCR is defined as the GMST increase at year
70 when atmospheric CO2 concentration is doubled under a 1% per year increase scenario
(Forster et al., 2021). FaIR is able to represent model uncertainty by making use of a
parameter ensemble informed by CMIP6 models and constrained with the observed level and
trend of anthropogenic warming (Sec. 2.2.4). While the range of TCR from the constrained
parameter ensemble of FaIR is in good agreement with the latest estimate of the IPCC and
generally lower than the TCR derived from CMIP6 models, higher values of ECS remain
possible within the constrained parameter ensemble of FaIR compared to the estimate of
the IPCC and ECS from CMIP6 models (Fig. 1). This is caused by the constraint that is
applied to generate the constrained parameter ensemble of FaIR being unable to rule out
high values of ECS (Leach et al., 2021). Extremely high values of GMST produced by fair
towards the end of the model period might therefore be unrealistic.

When comparing values of GMST from FaIR to the threshold temperatures of the TEs, we
account for the uncertainty in the threshold temperatures by relying on the respective ranges
specified by (Armstrong McKay et al., 2022) (Tab. 1). It must be noted that additional
uncertainty about the timing of triggering TEs might exist, since the threshold temperature
of slow-onset TEs like ice sheets can be exceeded temporarily without triggering the TE if
the overshoot time is short compared to the characteristic timescale of the TE (Ritchie et al.,
2021). We do not account for this behaviour in this study, as it would significantly increase
the complexity of our analysis.

To assess the impacts of carbon TEs and how they change the probabilities of triggering other
TEs, we develop a conceptual carbon tipping elements model (CTEM) (Sec. 2.3) which is
coupled to FaIR and able to represent the estimated behaviour of carbon TEs from Armstrong
McKay et al. (2022) (Fig. 2). As CTEM is not process-based, our results should not be seen
as diagnostic, but can be helpful to explore the general dynamics of the carbon TEs.

To propagate the uncertainties within the climate response, the carbon TEs and the threshold
temperatures, we apply a Monte Carlo approach (Metropolis et al., 1953) to generate large
model ensembles. These ensembles are used to analyse the potential carbon emissions and
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the temperature impact of carbon TEs, how likely TEs are to be triggered under the various
SSPs and how those probabilities change if carbon emissions from carbon TEs are included.
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2 Data and Methods

2.1 SSP Emission Pathways

We use the CMIP6 GHG and aerosol emissions and effective radiative forcing datasets
employed in the Reduced Complexity Model Intercomparison Project (Nicholls et al., 2020).
Both datasets contain global average values with an annual timestep throughout the historical
period (1750-2014) which shifts to a decadal timestep for the projection period (2015-2500).

The CMIP6 GHG and aerosol emission projections for the five different SSP scenarios follow
Gidden et al. (2019). The emission extensions beyond 2100 follow the conventions described
in Meinshausen et al. (2020). Historical emissions (1750–2014) of chemically reactive gases
(CO, CH4, NH3, NOx, SO2, non-methane volatile organic compounds) carbonaceous aerosols
(black carbon and organic carbon) and CO2 come from the Community Emissions Data
System (Hoesly et al., 2018). Historical biomass burning emissions of CH4, black carbon,
CO, NH3, NOX, organic carbon, SO2 and non-methane volatile organic compounds come
from Van Marle et al. (2017). Global historical CO2 emissions from land-use are taken from
the Global Carbon Budget 2016 (Le Quéré et al., 2016). Regional breakdown of land-use
CO2 emissions and N2O emissions come from the Potsdam Real-time Integrated Model for
probabilistic Assessment of emissions Paths for historical emissions version 1.0 (Guetschow
et al., 2016). Data gaps in the historical emissions were filled with inverse emissions based
on CMIP6 concentrations from the Model for the Assessment of Greenhouse Gas Induced
Climate Change (MAGICC) 7.0.0 (Meinshausen et al., 2020).

Effective radiative forcing for CMIP6 follows the data provided by Smith (2020).

2.2 The FaIR Model

We use the second version of the FaIR model developed by Leach et al. (2021), which is
run with an annual timestep. It consists of six equations, five of which are adopted from
Myhre et al. (2013). The sixth equation implements a state-dependency of the carbon cycle,
which enables a better representation of the relationship between emissions and atmospheric
concentrations for historical observations and projections (Leach et al., 2021). As a 0D
model, FaIR represents global averages. It maps GHG and aerosol emissions to GMST (Fig.
2). Despite its relative simplicity, FaIR is flexible enough to emulate more complex ESMs
from CMIP6 (Leach et al., 2021). In the following, we briefly present the structure of the
individual components of the model. A more detailed mathematical description can be found
in Leach et al. (2021).
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2.2.1 Gas Cycle

The CO2 gas cycle is represented by a four-timescale impulse response function, where CO2

emissions accumulate in four different atmospheric pools which are added up to give the
total atmospheric concentration. Qualitative analogies for each atmospheric pool can be
found in Millar et al. (2017). The decay timescale of CO2 within all atmospheric pools is
adjusted depending on temperature, CO2 emissions and atmospheric CO2 concentration,
allowing the effective CO2 sink from the atmosphere to change in a state-dependent manner.
This mechanism captures the carbon-concentration and carbon-climate feedback over land
and ocean found in ESMs by Arora et al. (2020) (Leach et al., 2021). The differences due
to non-linearities arising from the decay timescale adjustment have been investigated with
various emission pulse experiments and found to be small with < 0.5◦C for pulse sizes
< 100GtCO2eq (Leach et al., 2021).

Except for CO2, all GHGs are modelled with only one atmospheric gas pool and therefore
one decay timescale. The state-dependency of the decay timescale of atmospheric CO2

concentrations is also applied to atmospheric CH4 concentrations, but is not implemented for
all other GHGs.

2.2.2 Effective Radiative Forcing

The atmospheric GHG concentrations are translated to effective radiative forcing (ERF) by
a linear combination of a logarithmic, a linear and a square-root term. The coefficients for
each term are individual for each GHG and mostly lead to only one term being used for a
certain GHG. For CO2 the square-root and the logarithmic terms are used, and for CH4 only
the logarithmic term is used. It must be noted, that overlaps between the spectral bands of
GHGs identified by Etminan et al. (2016), which can be represented by including interaction
terms in the calculation of ERF as done by Meinshausen et al. (2020), are not included in
FaIR to reduce the structural complexity of the model. However, the maximum relative error
in radiative forcing introduced by this simplification is only 1.1% (Leach et al., 2021).

Aerosol emissions are directly converted to ERF due to their short atmospheric lifetimes. A
number of other mechanisms contributing to ERF such as black carbon on snow are included
explicitly in FaIR, with a detailed explanation given in Leach et al. (2021). Natural variations
of ERF as well as changes in ERF due to albedo changes caused by anthropogenic land-use
are not represented by FaIR, but ERF values for both processes are taken directly from
CMIP6 data.
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2.2.3 Temperature Response

The sum of the ERF from all forcing agents is translated to GMST by using a three-box energy
balance model. The commonly used matrix formulation of the energy balance model has
been simplified to a three-timescale impulse response function, again reducing the structural
complexity of FaIR. Values of GMST are given as anomalies relative to the 1850-1900 period.

2.2.4 Parameterization

FaIR allows for probabilistic projections of GMST with parameters selected from a constrained
ensemble. To derive this constrained ensemble, Leach et al. (2021) run a 106 member ensemble,
sampling the uncertainty within the gas cycle, effective radiative forcing, and thermal response
parameters as informed by CMIP6 models. To constrain this full parameter ensemble, they
use the distributions of the observed rate and level of the anthropogenic contribution to
global warming between 2010 and 2019 (anthropogenic warming index distribution), following
the methodology of Haustein et al. (2017). The members of the constrained ensemble are
selected by setting the section probability of each member of the full parameter ensemble
equal to the likelihood of its simulated warming level and trend within the anthropogenic
warming index distribution. This procedure results in a selection probability between zero
and one for each member of the full parameter ensemble. The member is selected for the
constrained ensemble if its selection probability is higher than a randomly generated number
between zero and one, which yields a constrained ensemble with ∼ 9.6 · 104 members. From
this constrained parameter ensemble, a subgroup of members can be selected randomly to
construct a model ensemble of individual size. Additionally, a default parameterization of
FaIR is available, which consists of estimates from previous model studies and measurements
or central values from the constrained parameter ensemble.

To rule out possible double counting of carbon emissions from permafrost thaw or Amazon
dieback, we have to make sure that these processes are not implicitly included in the
parameters of FaIR. This could be the case if carbon emissions from both TEs and the
respective warming were included either in the CMIP6 models used to parameterize the
carbon cycle of FaIR or in the anthropogenic warming index distribution used to constrain
this parameterization.

The CMIP6 data used for the parameterization of the FaIR carbon cycle is derived from the
fully coupled and biogeochemical 1pctCO2 runs of eleven CMIP6 models (Arora et al., 2020).
Of those eleven models, only two represent permafrost processes by including the effect of
active layer thickening on decomposition of soil carbon (Canadell et al., 2021), which means
they can represent PFGT but not PFAT or PFTP (See Sec. 1.3 for detailed explanation).
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Only three of those eleven CMIP6 models include vegetation dynamics (GFDL-ESM4, MPI-
ESM1-2-LR and UKESM1-0-LL) and are therefore able to represent eventual dieback of
AMAZ (Arora et al., 2020). Of those three, only GFDL-ESM4 predicts abrupt dieback in
parts of AMAZ in the 1pctCO2 run, which, however, does not lead to significant reduction of
the total carbon being stored in the Amazon vegetation (Parry et al., 2022). Therefore, we
assume that carbon emissions from PFTP, PFAT and AMAZ are not implicitly included in
the parameterization of the full parameter ensemble of FaIR.

If carbon emissions from AMAZ, PFTP or PFAT and the resulting global warming were
already observable and detected in the dataset used to constrain the full parameter ensemble,
the constrained parameter ensemble of FaIR would also account for those additional carbon
emissions, as members with lower climate sensitivities were more likely to be excluded.
However, no multi-decadal trend of CO2 or CH4 fluxes over the boreal permafrost region
is yet detectable (Canadell et al., 2021), hence we assume that PFAT and PFTP carbon
emissions are also not included in the constrained parameter ensemble of FaIR. Carbon
emissions from AMAZ need to be considered more carefully, as the forest has already turned
from a sink into a carbon source at the four measurement sites inspected by (Gatti et al.,
2021). To get an impression of the potential magnitude of recent carbon emissions from
AMAZ, we average over the four observed trends of total C flux (0.2 gCm−2d−1) and multiply
this with the area of the forest of 7.25 · 106 km2 (Gatti et al., 2021) and the days of the
measurement period (2010–2018), which gives total emissions of 584 tC. Compared to the
potential carbon emissions from AMAZ collapse of up to 75GtC (Tab. 1), we regard this
to be negligible and do assume that major contributions from AMAZ collapse are also not
included in the constrained parameter ensemble of FaIR.

2.3 Carbon Tipping Elements Model

With CTEM, we introduce a simple, system-dynamics type model that is able to represent the
carbon emissions from AMAZ, PFAT, and PFTP, with threshold temperatures, timescales,
and impacts consistent with the estimates from Armstrong McKay et al. (2022) (Tab. 1).
Each TE is represented by a stock of cumulative carbon emissions it adds to the SSP carbon
emissions. The cumulative emissions are represented by the following logistic equation:

dS

dt
= r

(
T

P

)
S

(
1− S

K

)
, (2)

with S being cumulative carbon emissions (in GtC), r the maximum growth rate (in yr−1),
K the maximum impact (in GtC), P the threshold temperature (in °C), T GMST relative
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Figure 2: Schematic representation of our model framework. The structure of FaIR is reproduced
from Leach et al. (2021). The colours split the model in into gas cycle (green), radiative forcing
(yellow) and climate response (red) components. Colours of CTEM components represent the Earth
system domain of the TE (blue = cryosphere, green = biosphere).

to pre-industrial levels (in °C) and t time (in years). The rate-dependence of all three TEs
found by Armstrong McKay et al. (2022) is included by the term T/P , which means higher
exceedance of the threshold temperature causes faster change in S.

For AMAZ and PFTP, the impact is independent of GMST once they are triggered (Tab. 1).
Therefore, eq. 2 can be used to represent them without further modifications being necessary.

The impact of PFAT, however, depends on GMST, with higher temperatures leading to
increased carbon emissions, and different values for this feedback in 2100 and 2300 (Tab. 1).
Therefore, K from eq. 2 needs to be calculated as

K = min(F · T, Kmax) (3)

with

F =


F100 ∀ t ≤ 2100

F100 · 2300−t
200

+ F300 · t−2100
200

∀ 2100 < t < 2300

F300 ∀ t ≥ 2300

(4)

Here, K is calculated as the product of the feedback strength F (in GtC ◦C−1) and GMST
(in °C), limited to the maximum impact Kmax (in GtC) of PFAT. In eq. 4, we define F as
the feedback strength for the year 2100 (F100) before and in 2100, as the feedback strength
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Figure 3: Schematic representation of the timestepping scheme in FaIR. Vertical lines represent
single timesteps and horizontal arrows the time between them. Variables should be interpreted as
single values given at a time step (over vertical lines), or as averages between the timesteps (between
vertical lines).

for the year 2300 (F300) in and after 2300 and interpolate linearly between these two values
between 2100 and 2300.

The resulting set of three differential equations (one for each TE) is solved using a forward
difference scheme, similar to the implementation of FaIR (supplement of Leach et al., 2021).
In FaIR, output variables such as T are assumed to be average values between two consecutive
timesteps (denoted by a bar over t), while the values for the input variables such as the
annual SSP GHG emissions (ESSP) reside at each timestep (no bar over t). To be consistent
with this implementation, we define S and the resulting annual carbon emissions from each
TE (ETE) also at each timestep (Fig. 3). To calculate S for each timestep (t) with a step
size (∆t) of one year, we integrate eq. 2 which yields:

S(t) =

(
e−a(t−1)∆t

(
S−1(t− 1)− b(t− 1)

a(t− 1)

)
+

b(t− 1)

a(t− 1)

)−1

, (5)

with the auxiliary variables a and b being calculated as

a(t− 1) = r
T (t− 1)

P

b(t− 1) =
rT (t− 1)

PK
.

For PFTP and AMAZ eq. 5 can be used directly to calculate S, but for PFAT K needs to
be calculated using eq. 3 with T = T (t− 1) and is therefore also time-dependent (for the
full derivation please see Appendix). Irreversibility of carbon emissions from all three TEs is
implemented by setting negative changes of S to zero.
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2.3.1 Coupling to FaIR

CTEM is coupled to FaIR every timestep by adding ETE to ESSP. We for each TE we
calculate ETE from S as

ETE(t) = S(t)− S(t− 1).

The total carbon emissions ETE are then split up into CO2 and CH4 emissions for all three
TEs, with 2.3% of carbon emissions being methane for PFTP, 20% for PFAT and 0% for
AMAZ (see Sec. 1.3 for explanation of emission fractions). The annual CH4 and CO2

emissions of all three TEs are then added to ESSP(t) of the respective SSP and the sum is
used to run the next timestep of FaIR, calculating T (t) which is then used to force CTEM
and so on.

2.3.2 Calibration

Figure 4: S for the calibration of the mean
timescale of AMAZ. The red shaded area denotes
the period over which 99% of the cumulative car-
bon emissions occur.

The CTEM needs to be calibrated to resem-
ble the estimated behaviour of PFAT, PFTP
and AMAZ summarized in Tab. 1. While
values for F100, F300, K, Kmax, and P are
sampled directly from the distributions of
those estimates (Sec. 2.4.1), r and the initial
stock (S0) need to be calibrated or defined
for the model to match the proposed tipping
timescales (H). For the definition of S0, we
define the tipping timescale as the period
over which 99% of the cumulative carbon
emissions occur (Fig. 4), which means S0

is defined as 0.5% of K (Kmax for PFAT).
All calibrations of r are performed under the
SSP5-8.5 scenario, as most model studies which inform the emission estimates of all three TEs
were performed under the corresponding RCP8.5 scenario (Armstrong McKay et al., 2022).
To increase transparency, all TEs are calibrated individually, with the other two TEs being
deactivated. Furthermore, we use the default parameterization of FaIR for all calibrations.

For the calibration of PFTP and AMAZ, we use the respective mean estimate for P and K.
We calibrate r by splitting the respective range of H from Tab. 1 into ∼ 100 equally spaced
bins, with one value of r fitted to each bin. We define the following objective function, which
resembles the squared difference (D) between the observed H of the model and the expected
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Figure 5: Calibrated rate (r) for H of PFTP and AMAZ. Grey vertical lines denote maximum,
mean and minimum estimate of H from Tab. 1.

value:
D = ((Yend − Ystart)−H)2, (6)

with Yend being the year in which 99.5% of maximum cumulative emissions are emitted and
Ystart the year in which the respective TE is triggered. These values are looked up in the
model results without any further time-aggregation being necessary, which increases the
performance of the calibration algorithm. The objective function is minimized for each bin of
H for AMAZ and PFTP using the Nealder-Mead algorithm (Gao and Han, 2012), which gives
the calibrated values of r (Fig. 5). The objective function has been successfully minimized to
zero for all bins of H for PFTP and AMAZ.

For PFAT, we only calibrate r for the mean estimate of H, using the mean values of P and
Kmax with K = Kmax at all times. This is due to the fact that the timescale over which the
emissions from PFAT occur is already included in the ranges of F100 and F300. The value of
r = 0.041 yr−1 corresponding to the mean value of H = 200 years is determined by using the
objective function (eq. 6), which is minimized to zero.

2.3.3 Test of the Calibration

Here, we investigate how well the calibrated version of CTEM resembles the estimated values
of H of PFTP, AMAZ and F100 and F300 of PFAT from Tab. 1.

To test the emission feedbacks in 2100 and 2300 of PFAT, we generate 10 equally spaced
values of F100 and F300, covering the whole uncertainty range and 10 equally spaced values of
P , also covering the respective uncertainty range. With this parameter set, we generate 100
model runs, one for each combination of pairs of F100 and F300 and P . CTEM is coupled to
FaIR which is run with its default parameterization under SSP5-8.5, which has also been used
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for the calibration of CTEM. Now we calculate the difference between the cumulative carbon
emissions from CTEM and the expected cumulative carbon emissions based on the values of
F100 and F300 and T for the years 2100 and 2300. In 2100 there are significant deviations
between the two, with the cumulative emissions of PFAT from CTEM being smaller than
expected (Fig. 6). The relative error of the cumulative carbon emissions in 2100 increases with
increasing values for P , whereas the value of F100 does not seem to have an effect on the error.
Maximum errors of up to 80% are reached for the highest realization of P . Nevertheless, the
relative error is reduced to values below 5% for all combinations of F300 and P in 2300. This
implies that the medium H is too large to allow for high enough emissions between crossing
the tipping point of PFAT and 2100. However, we regard this as the best possible imple-
mentation of PFAT since the long-term cumulative carbon emissions still roughly match the
estimates and lower values of H would lead to potentially unrealistic abrupt carbon emissions.

Figure 6: Deviations between the expected and
the modelled cumulative carbon emissions from
PFAT in 2100. One box represents one model
realization with the respective values of P and
F100 used for PFAT, with all other TEs within
CTEM being deactivated and FaIR run with de-
fault parametrization under SSP5-8.5.

For PFTP and AMAZ, we test how well the
estimated values of H are met by CTEM
for various combinations of K and P . We
produce 10 equally spaced values of K and
P , covering the whole uncertainty range and
run the model for each combination for both
PFTP and AMAZ, with all other TEs within
CTEM being deactivated. In this manner,
we produce 100 model runs for the minimum,
the mean, and the maximum estimate of H
for PFTP and AMAZ. FaIR is again run with
its default parameterization under SSP5-8.5.
The relative error in H of PFTP and AMAZ
increases with increasing values for H, with
CTEM producing smaller values of H than
expected for low P and higher values for high
P . (Fig. 7). Differences in K seem to have
nearly no impact on the error in H for both AMAZ and PFTP. Notably, the relative errors in
H are higher for AMAZ, with -27% and 45% being reached for the maximum estimate of H.
For PFTP, the errors are more symmetric, lying between -19% and 19% for the maximum
estimate of H. The change of sign of the errors around the mean value of P makes sense, as
the mean value of P has been used for the calibration. The observed lower values of H for
low P and higher values of H for high P can be explained by the rate-dependence of both
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Figure 7: Deviations between the expected and the modelled H from CTEM in percent for the
minimum, mean, and maximum estimate of H of PFTP and AMAZ with values of K and P equally
spaced between the respective maximum and minimum estimate. One box represents one model
realization with the respective values of P and K used for PFTP (upper row) or AMAZ (lower row)
with all other TEs within CTEM being deactivated and FaIR run with default parametrization
under SSP5-8.5.

TEs, with higher exceedance of P leading to faster tipping. As the increase of T slows down
over time under SSP5-8.5 (Fig. 13), lower values of P lead to lower H and vice versa. Hence,
the observed errors in H of PFTP and AMAZ from CTEM comply with the rate dependence
of both TEs and are therefore regarded to be realistic.

2.4 Model Ensembles

We construct a coupled (FaIR coupled to CTEM) and an uncoupled (FaIR only) 5000 members
model ensemble for all five SSPs. Hereby, we follow a Monte Carlo scheme (Metropolis et al.,
1953) to propagate the uncertainties within FaIR and CTEM. For stability analysis or the
inspection of quantities near the extremes of the resulting variable distributions, we construct
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up to 20 coupled model ensembles with 5000 members each to determine the robustness of
the results.

2.4.1 Sampling Strategy

For the parameterization of FaIR, we randomly select 5000 members of the constrained
parameter ensemble (see Sec.2.2.4 for the constrained ensemble). We use the same parameter
sample for FaIR in both ensembles to make sure that changes in the climate response only
arise from carbon emissions of the carbon TEs. To determine the probability of triggering,
we sample the uncertainty range of P for all TEs, again using the same parameter sample
for both ensembles. For CTEM, we sample the uncertainty ranges of the whole parameter
set, which consists of H, P , K for PFTP and AMAZ, and P , F100, F300 and Kmax for
PFAT. For the sampling process of P for all TEs and H for PFTP and AMAZ, we infer
probability distributions from the estimates of P and H in Tab. 1, deciding that the minimum
estimate, the best estimate, and the maximum estimate should correspond to the 5th, the
50th and the 95th percentile of the respective probability distribution. To determine the
probability distributions which best fits those percentiles, we use the “rriskDistributions”
package (Belgorodski et al., 2017), which chooses out of 17 continuous probability distributions,
minimizing the absolute difference between the given and the actual percentiles (for a list of
all distributions see Appendix).

For the distribution of P for all TEs, we derive eight log-normal, four triangular, three normal
and one Gompertz distribution (Fig. 8). It must be noted, that this choice of probability
distributions does not involve any additional information about the suitability of certain
probability distributions, but is only based on the fitting routine introduced above. While
some distributions of P agree perfectly with the given percentiles (AMOC, EAIS, TUND,
BARI, SAHL), others deviate substantially with RMSEs higher than 0.2°C (WAIS, BORF,
EASB, LABC). In the case of WAIS, EASB, and LABC this deviation is mainly caused by
too low values at the 95th percentile, which is reached at 2.3°C rather than 3°C for WAIS,
4.6°C rather than 6°C for EASB, and 3.1°C rather than 3.8°C for LABC. In the case of BORF,
the relatively high RMSE is caused by a too high value at the 5th percentile (1.7°C rather
than 1.4°C) and a too low value at the 50th percentile (3.8°C rather than 4°C), while the
95th percentile agrees well with the expected value (less than 0.02°C deviation). Even though
the deviations between the given and the actual percentiles of those four TEs are significant,
we regard them to be acceptable, given that they cannot be reduced with our methodology,
meaning that other probability distributions would be needed to achieve this. However, it
must be kept in mind that high probabilities of tipping might be reached at too low values of
GMST for WAIS, EASB and LABC due to their imperfect probability distributions of P .
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Figure 8: Cumulative distribution functions of P for all TEs, together with the RMSE between the
given percentiles (red dots) and the actual percentiles of the respective distribution. The title states
TE, distribution type and RMSE in °C.

For the distribution of H for PFTP and AMAZ, we derive one log-normal distribution each
(Fig. 9). The distribution for AMAZ fits the given percentiles nearly perfectly, with a
root-mean-square error (RMSE) of only 0.02 years, while the distribution for PFTP deviates
more, with a RMSE of 14.85 years. The main source for this comparably large error is the
deviation of the actual 95th percentile, which lies at 274.3 years rather than 300 years.

The impacts K of PFTP and AMAZ and the maximum impact Kmax of PFAT are sampled
from continuous uniform distributions, with the same probability for all values within the
given ranges from Tab. 1 (Fig. 10). We regard this reasonable since Armstrong McKay
et al. (2022) only give maximum and minimum values for those variables, and we do not
have any additional information about their distribution. Furthermore, the estimates of
the impacts are given with low (PFTP) or medium confidence (PFAT, AMAZ) and rest on

Page 42



Chapter 2 Data and Methods

Figure 9: Cumulative distribution functions of H for PFTP and AMAZ, together with the RMSE
between the given percentiles (red dots) and the actual percentiles of the respective distribution.
The title states TE, distribution and RMSE in years.

Figure 10: Cumulative distribution functions of K for AMAZ and PFTP and Kmax for PFAT. The
dotted red lines indicate the range of the respective variable from Tab. 1.

the comparison of different model studies and expert judgments (PFAT, PFTP) or rough
calculations (AMAZ) which do not give more information about the distributions of the
impacts (Sec. 1.3 and Supplement of Armstrong McKay et al. (2022)).

The feedback strengths F100 and F300 of PFAT are also sampled from continuous uniform
distributions, with the same probability for all values within the given ranges from Tab. 1
(Fig. 11). Here, the same argument holds as for the selection of the distributions of K and
Kmax. The estimated range of the PFAT emission feedback from Armstrong McKay et al.
(2022) is based on two studies, one using inventory models (Turetsky et al., 2020) and the
other one relying on expert judgments (Schuur et al., 2015). Both studies do not give any
meaningful indication about the distributions of PFAT feedbacks.

We use Latin hypercube sampling (McKay et al., 1979) to sample from the probability
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Figure 11: Cumulative distribution function of F100 and F300 of PFAT. The dotted red lines indicate
the range of the respective variable from Tab. 1.

distributions of P , K, Kmax, F100, F300, and H introduced in the sections above.
We assume that all parameters within the parameter set of CTEM are uncorrelated, except
for F100 and F300, which are correlated with a correlation coefficient of 1. The decision about
the correlation of the parameters represents our understanding that there are no correlations,
or at least no clear evidence for them, between the threshold temperatures, the timescales, or
the impacts of AMAZ, PFAT and PFTP. The correlation between F100 and F300 is established
since H of PFAT is included in those parameters, and we assume that H is constant over
time, e.g., a low feedback in 2100 associated with a high H also means low feedback in 2300
due to the same high H the emissions occur over.

To generate model ensembles of size n = 5000, the Latin hypercube sampling is performed
as follows. The interval [0, 1) is divided into n disjoint intervals with the same probability,
which means in our case they are of the same size. From each interval, a random value yj is
picked, with j = 1, 2, ..., n. For every yj, the corresponding parameter xj is determined by
using the inverse form of the cumulative distribution function (F ) of the respective probability
distribution:

xj = F−1(yj), j = 1, 2, ..., n.

In this manner, we sample from all parameter probability distributions introduced above,
which gives us a parameter sample of size ten for CTEM, and 13 additional samples of P ,
one for each TE not included in CTEM, for every coupled ensemble member. For every
uncoupled ensemble member, we only use one sample of P for each of the 16 TEs, which are
the same values as for the corresponding coupled ensemble member.

For functions that are monotonic in each sampled parameter, Latin hypercube sampling is
superior to random sampling as it reduces the variance of aggregated measured between
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Figure 12: Mean (µ) and fifty times standard deviation (σ) of the ensemble mean of S from ten
coupled 5000 member ensembles using Latin hypercube (LH) sampling and ten coupled 5000 member
ensembles using random sampling, run under SSP5-8.5.

ensembles, such as the ensemble mean (Theorem 3.1 in Helton and Davis (2003)). We
assume that the function for S (eq. 5) CTEM is based on, is monotonic in all sampled
parameters H, P , K, Kmax, F100, and F300, and that therefore Latin hypercube sampling is
superior to random sampling for CTEM. Rather than proving this mathematically, we test
this hypothesis in a model experiment. We construct ten coupled 5000 member ensembles
using Latin hypercube sampling and another ten coupled 5000 member ensembles using
random sampling for the whole parameter set of CTEM, run under SSP5-8.5 and with FaIR
in its default parameterization. The results show that the variance of the ensemble mean
of S is small for both sampling techniques, but again reduced for all three TEs at all times
when Latin hypercube sampling is used (Fig. 12). Especially for PFTP and AMAZ there
is a high degree of convergence towards the end of the time series when Latin hypercube
sampling is used that is not achieved by random sampling.

2.4.2 Robustness of Ensemble Results

To examine whether an ensemble of size 5000 is sufficiently large to approximate the dis-
tributions of the output variables with our Monte Carlo approach, we create 20 coupled
ensembles with 5000 members and run under SSP5-8.5, sampling uncertainties within FaIR
and CTEM. As carbon emissions from CTEM are used to calculate T , which is also the

Page 45



Chapter 2 Data and Methods

final output variable of FaIR, it includes uncertainties from all parameters and is hence
expected to vary most between different ensembles. Therefore, we inspect the deviation of
T between the 20 ensembles. While the 5th percentile and the mean of T are nearly equal
for all ensembles, with standard deviations below 0.06°C at all times, the 95th percentile
deviates slightly between the ensembles, with a standard deviation of up to 0.24°C (Fig. 13).
For all three percentiles, the deviation between the ensembles increases with model lead time.
Even though we regard those deviations to be sufficiently small, given the range of T between
the 5th and the 95th percentile, results associated with temperatures from the upper end of
their distribution should still be inspected more carefully.

2.5 Calculation of Tipping Probabilities

To calculate the probabilities of triggering any of the 16 TEs discussed in this study, we
sample one value of P from the respective distribution (Fig. 8) for each TE and each ensemble
member. If T of that ensemble member exceeds P , the TE is counted as triggered. In this
manner, we derive the share of ensemble members in which a TE is triggered for each TE at
all times. As all TEs discussed here are by definition irreversible on the considered timescale,
the share of triggered TEs cannot decrease with time, even if T would decrease. The share of
ensemble members with triggered TEs is then used to further investigate the probabilities
of triggering, e.g., by calculating the timing of the exceedance of certain share percentages.

Figure 13: Comparison of the 5th percentile, the
median and the 95th percentile of T between 20
coupled ensembles with 5000 members each. Mean
estimate from all ensembles and two times stan-
dard deviation (σ) between the ensembles.

2.6 Testing

Statistical Significance

For the inspection of temperature distribu-
tions from the coupled and the uncoupled
ensemble in 2100 and 2300, we generate nine
additional coupled ensembles to make state-
ments about the difference between the dis-
tributions and their statistical significance.
More specifically, we calculate percentiles
and the probabilities of exceeding certain
temperatures from both temperature distri-
butions. Estimates of the standard deviation
of those results are only available for the cou-
pled ensembles, as we use only one uncoupled ensemble. Therefore, the general setting is
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that we have nc = 10 samples X from the coupled ensembles with the arithmetic mean
(µ̂c) and one estimate of the mean from the uncoupled ensemble (µ̂u), which is the single
value obtained from the uncoupled ensemble. We test the null hypothesis for the means of
the underlying distributions µc = µu against the alternative hypothesis µc > µu, using a
one-sided Student’s t test following the methodology of Storch and Zwiers (1999). For this
analysis to be applicable, three conditions need to be satisfied. First, all samples X need to
be independent. Second, the distribution that generates the samples X must be the same for
every sample and third, the distribution must be normal. Condition one and two are met
by our construction methodology of the coupled ensemble. For condition three, we can only
assume that it is met, but the Student’s t test is relatively robust against deviations from
this condition (Storch and Zwiers, 1999).

Under the null hypothesis, the variable

t =
µ̂c − µ̂u

Sc

√
1
nc

,

with Sc being the arithmetic standard deviation of the samples from the coupled ensembles,
is distributed according to a Student distribution with nc − 1 degrees of freedom. Therefore,
we calculate the p−value as

p = 1−
∫ t

−∞
Student(t∗)dt∗,

with Student(t∗) being the Student distribution with nc− 1 degrees of freedom. The p−value

is then compared to the significance level of 99%, i.e., p < 0.01 is required to reject the null
hypothesis for the alternative hypothesis.
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3 Results

Figure 14: 16.6th to 83.3rd percentile (shaded)
and median (solid line) of GMST relative to the
1850-1900 period for the Tier1 SSPs from the un-
coupled ensemble.

In this section, we first give an overview
over the additional carbon emissions from
the carbon TEs and the respective temper-
ature impacts, before we present the tipping
probabilities and how they change due to the
temperature impact from carbon TEs.

We give general results for all Tier1 SSPs,
however, to stay within the scope of this
study, we focus on SSP1-1.9, SSP2-4.5 and
SSP5-8.5 for some parts of the more detailed
analysis. With those three scenarios, we span
the whole range of possible temperature im-
pacts from all Tier1 SSP scenarios (Fig 14).
SSP1-1.9 is the “best case” scenario with the
lowest temperature increase and therefore
still in compliance with the Paris Agreement,
aiming to limit global warming to 1.5°C compared to pre-industrial levels (UNFCCC, 2015).
SSP2-4.5 is the scenario that produces temperatures closest to the expected 2.7°C in 2100
current policies and actions are expected to lead to (Climate Action Tracker, 2022) and can
be termed a “middle of the road” scenario. SSP5-8.5 can be seen as a “worst case” scenario,
associated with ongoing fossil-fueled development causing a maximum global warming.

The calibrated language of the IPCC for the description of probabilities is used within this
study: virtually certain: 99 – 100%, extremely likely: 95 – 100%, very likely: 90 – 100%,
likely: 66 – 100%, more likely than not: >50 – 100%, about as likely as not: 33 – 66%,
unlikely: 0 – 33%, very unlikely: 0 – 10%, and extremely unlikely: 0 – 5% (Chen et al., 2021).

3.1 Emissions from Carbon Tipping Elements

We restrict the inspection of carbon emissions to the period between 2000 and the end of
the model runs in 2500 since no emissions from CTEM occur before 2000. Our analysis
of the carbon emissions from the carbon TES within the coupled ensemble mostly rests
on the inspection of the 5th, the 95th percentile and the median of carbon emissions to
gain an understanding of the ensemble spread. However, it must be noted that ensemble
members with untipped carbon TEs skew the distributions towards lower values. Therefore,
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Figure 15: Carbon emissions and cumulative carbon emissions from the carbon TEs (modelled by
CTEM) between 2000 and 2500.

Figure 16: Carbon emissions and cumulative carbon emissions from the Tier1 SSP scenarios and
the carbon TEs (modelled by CTEM) between 2000 and 2500.

Page 49



Chapter 3 Results

2050 2100 2200 2300 2400 2500

SSP1-1.9

CO2 [GtC] 1 (0-5) 5 (0-19) 11 (0-36) 16 (0-58) 18 (0-63) 18 (0-66)
CH4 [GtCH4] 0.3 (0-1.5) 1.8 (0-5.6) 3.5 (0-10.2) 5.3 (0-16.7) 5.9 (0-17.8) 6 (0-18.3)
dT [°C] 0.01 (0-0.07) 0.04 (0-0.17) 0.03 (0-0.2) 0.05 (0-0.29) 0.03 (0-0.23) 0.03 (0-0.22)

SSP1-2.6

CO2 [GtC] 1 (0-5) 8 (0-29) 20 (0-85) 30 (0-121) 33 (0-136) 33 (0-152)
CH4 [GtCH4] 0.3 (0-1.6) 2.6 (0-7.5) 6.4 (0-15.9) 9.8 (0-25.3) 10.5 (0-27.0) 10.7 (0-27.8)
dT [°C] 0.01 (0-0.07) 0.07 (0-0.24) 0.08 (0-0.34) 0.1 (0-0.49) 0.06 (0-0.47) 0.06 (0-0.53)

SSP2-4.5

CO2 [GtC] 1 (0-6) 16 (2-155) 67 (19-324) 102 (28-359) 108 (30-365) 112 (30-369)
CH4 [GtCH4] 0.3 (0-1.8) 4.7 (0.4-13.6) 15.6 (6.3-33) 21.9 (9.2-43.3) 22.8 (9.6-44.7) 23.1 (9.7-45.3)
dT [°C] 0.01 (0-0.08) 0.13 (0.02-0.61) 0.2 (0.06-0.85) 0.22 (0.06-0.91) 0.16 (0.03-0.89) 0.16(0.03-0.91)

SSP3-7.0

CO2 [GtC] 1 (0-6) 34 (6-245) 285 (91-381) 318 (143-403) 322 (154-406) 324 (160-407)
CH4 [GtCH4] 0.4 (0-1.9) 8.1 (1.5-20) 29.3 (17-47.5) 35.2 (22.9-53.9) 35.6 (23.4-53.9) 35.9 (23.6-54)
dT [°C] 0.01 (0-0.08) 0.25 (0.05-0.94) 0.39 (0.15-0.81) 0.31 (0.13-0.66) 0.27 (0.1-0.63) 0.26 (0.09-0.63)

SSP5-8.5

CO2 [GtC] 2 (0-8) 78 (13-283) 304 (138-389) 328 (235-408) 330 (244-410) 331 (246-411)
CH4 [GtCH4] 0.5 (0-2.3) 12.4 (3.3-26.2) 32 (20.6-50.5) 37.1 (24.1-54.3) 37.4 (24.3-54.6) 37.7 (24.3-54.7)
dT [°C] 0.02 (0-0.1) 0.4 (0.09-1.11) 0.31 (0.13-0.64) 0.23 (0.1-0.52) 0.19 (0.08-0.47) 0.18 (0.08-0.47)

Table 2: Median and very likely range (5th – 95th percentile) of cumulative CO2 and CH4 emissions
and the GMST increase (dT ) caused by the carbon TEs.

the resulting percentiles do not represent distributions of the carbon emissions from carbon
TEs in case of tipping, but do also include information about the share of ensemble members
that feature such tipping. This also holds for the percentiles of GMST presented in the next
section.

The cumulative carbon emissions from carbon TEs are increasing from SSP1-1.9 to SSP5-8.5
(Fig. 15, Tab. 2). However, carbon emissions from the carbon TEs have the highest potential
to make up for high shares of the total cumulative carbon emissions under low emission
scenarios (Fig. 16). The 95th percentile of cumulative carbon emissions from carbon TEs
reaches 84%, 40%, and 35% of the anthropogenic cumulative carbon emissions in 2500 under
SSP1-1.9, SSP1-2.6, and SSP2-4.5 respectively. Yet, such high carbon emissions from the
carbon TEs remain unlikely under SSP1-1.9 and SSP1-2.6, with the median cumulative carbon
emissions being less than half as high as the 95th percentile. Even zero carbon emissions
from the carbon TEs remain possible under those scenarios (Tab. 2). The confidence in
the occurrence of carbon emissions from carbon TEs increases significantly under SSP2-4.5,
reflected by higher median cumulative carbon emissions and zero carbon emissions becoming
very unlikely since the 5th percentile is non-zero after 2050 (Fig. 15). Carbon emissions
nearly as high as under SSP5-8.5 also become possible under SSP2-4.5, with the 95th
percentile reaching a maximum of 454 GtC. Under the high emission scenarios SSP3-7.0 and
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SSP5-8.5, such high carbon emissions from carbon TEs become more likely with increasing
median cumulative carbon emissions (Fig. 15), but since anthropogenic carbon emissions are
increasing even stronger, their relative contribution to the total cumulative carbon emissions
decreases (Fig. 16). The 95th percentile of cumulative carbon emissions from carbon TEs
only reaches 14% of the cumulative anthropogenic carbon emissions in 2500 under SSP3-7.0,
and 9% under SSP5-8.

Figure 17: Cumulative carbon emissions, CO2

emissions, and CH4 emissions from PFAT under
SSP1-1.9. Median and very likely range (5th to
95th percentile) together with randomly chosen
ensemble members.

The carbon emission rates from carbon TEs
can reach the same order of magnitude as
anthropogenic emissions under SSP2-4.5 and
higher emission scenarios, mostly between
the end of the 21st century and the middle of
the 22nd century (Fig. 16). However, if and
when such high emission rates would occur
remains highly uncertain, since the median
of the carbon emission rates remains much
lower than the 95th percentile at all times
under those scenarios.

Methane emissions make up for higher shares
of the total carbon emissions under low emis-
sion scenarios than under high emission sce-
narios (Tab. 2). Under SSP1-1.9, CH4 emis-
sions make up for 20% of the cumulative
carbon emissions in 2500, which decreases
to 7.8% under SSP5-8.5. This indicates that
under low emission scenarios, predominantly
PFAT is triggered which emits 20% of the
carbon emissions as methane, whereas under
high emission scenarios major parts of the to-
tal carbon emissions must come from PFTP
and AMAZ which only emit 2.3% and 0% of the carbon as methane respectively.

For a better understanding of the individual contributions of AMAZ, PFAT, and PFTP to
the total carbon emissions from carbon TEs, we analyse their behaviour under SSP1-1.9,
SSP2-4.5 and SSP5-8.5.

Page 51



Chapter 3 Results

3.1.1 SSP1-1.9

Under SSP1-1.9, carbon emissions from PFTP or AMAZ are extremely unlikely, with them
being triggered in only 0.9% and 4.4% of the ensemble members respectively. Therefore, the
only carbon TE that is likely to emit carbon under SSP1-1.9 is PFAT, which is triggered in
67% of the ensemble members. Hence, we only analyse carbon emissions from PFAT under
this scenario.

The increase of cumulative carbon emissions from PFAT happens gradually and mostly
between 2050 and 2300 (Fig. 17). The magnitude of the resulting cumulative carbon
emissions remains uncertain, with the 95th percentile of the cumulative emissions from PFAT
at 68GtC and the 5th percentile at 0.4GtC in 2500. Emissions of CO2 and CH4 follow
the exact same shape, as they are both defined as fractions of the total carbon emissions
(Sec. 2.3). They generally peak around 2070, followed by partial decline and remain roughly
constant between 2150 and 2300 before they decline completely (Fig. 17). The smoothness
of carbon emissions from PFAT is consistent with the findings of Armstrong McKay et al.
(2022), who classify PFAT as a linear feedback to GMST. The maximum anthropogenic
emission rates under SSP1-1.9 of 10.8 GtC yr−1 of CO2 and 388 MtCH4 yr−1, are well above
the emissions from PFAT, only reaching 0.3 GtC yr−1 and 105 MtCH4 yr−1 at the maximum
of the 95th percentile. Even though individual ensemble members produce higher carbon
emission rates from PFAT, they are not significantly exceeding the 95th percentile. The
oscillations of both CH4 and CO2 emissions from PFAT on decadal timescales are induced by
the oscillations of GMST in FaIR, due to variations in solar and volcanic forcing that are
prescribed externally (Fig. 14).

3.1.2 SSP2-4.5

Tipping of PFTP and AMAZ becomes more likely under SSP2-4.5, with them being triggered
in 38% and 55% of the ensemble members respectively, while tipping of PFAT becomes
virtually certain, occurring in 99% of the ensemble members. Therefore, we analyse carbon
emissions from all three TEs.

Our results reflect the finding of (Armstrong McKay et al., 2022) that PFTP causes the
highest cumulative carbon emissions of all three carbon TEs in case of tipping, with the 95th
percentiles reaching 232GtC, 71GtC, and 151GtC in 2500 for PFTP, AMAZ, and PFAT
respectively (Fig. 18). However, tipping of PFTP remains the exception under SSP2-4.5,
which is resembled by the median of cumulative carbon emissions from PFTP staying below
1.5 GtC. As for PFAT, the CO2 and CH4 emissions from PFTP follow by definition the same
shape, since they are defined as fractions of the total carbon emissions (Sec. 2.3). As expected
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Figure 18: Cumulative carbon emissions, CO2 emissions, and CH4 emissions from PFTP, AMAZ
and PFAT under SSP2-4.5. Median and very likely range (5th to 95th percentile) together with
randomly chosen ensemble members.

from the low median of cumulative carbon emissions, the median and the 5th percentile of
CO2 and CH4 emissions from PFTP stay close to zero (Fig. 18). The highest potential for
emissions of CO2 and CH4 from PFTP is between 2100 and 2300, as indicated by the 95th
percentiles. The randomly chosen ensemble members that feature tipping of PFTP under
SSP2-4.5 depict that emission rates can peak at very different magnitudes and times. This
behaviour stems from different values of threshold temperature, timescale, and impact of
PFTP being used for each ensemble member and is analysed in more detail for SSP5-8.5.

The fact that triggering of AMAZ happens in more than half of the ensemble members
under SSP2-4.5 results in relatively high confidence about the occurrence of carbon emissions
from AMAZ, with the median of cumulative carbon emissions starting to rise around 2300,
reaching 33 GtC in 2500 (Fig. 18). However, the timing of the emissions remains uncertain,
as depicted by the median of CO2 emissions, which stays close to zero. Consistent with the
lower threshold temperatures of AMAZ compared to PFTP, emissions from AMAZ have the
potential to occur earlier, with the 95th percentile of CO2 emissions increasing around 2080.
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As for PFTP, the CO2 emissions seem to occur as peaks with different magnitude and with
uncertain timing. However, the maximum emissions rates remain much lower than for PFTP.

Higher values for all three percentiles of cumulative carbon emissions from PFAT are reached
under SSP2-4.5 compared to SSP1-1.9 (compare Fig. 18 and Fig. 17). Even the 5th percentile
is non-zero and reaches 37 GtC in 2500, which is higher than the median under SSP1-1.9. The
median of cumulative carbon emissions from PFAT reaches 80GtC in 2500 under SSP2-4.5.
On the one hand, this difference is caused by PFAT being triggered in more ensemble members
under SSP2-4.5, on the other hand, also higher temperatures are reached under this scenario,
causing higher cumulative carbon emissions from PFAT (Fig. 14). The general behaviour of
CO2 and CH4 emissions from PFAT remains more gradual compared to PFTP and AMAZ,
with carbon being released over longer timescales in all individual ensemble members (Fig.
18).

The uncertainties in the response of the individual carbon TEs explain the uncertainties in
the sum of their emissions that is discussed above. The emission peaks with uncertain timing
and magnitude from AMAZ and PFTP result in high values of the 95th percentile of carbon
emissions from all carbon TEs under SSP2-4.5 while the median stays low (Fig. 15). The
large discrepancy between the median and the 95th percentile of cumulative carbon emissions
from all carbon TEs is mainly caused by the uncertain response of PFTP under SSP2-4.5,
as it is still about as likely as not to be triggered but causes high carbon emissions in the
case of tipping. Generally, as soon as its tipping becomes possible, the behaviour of PFTP
is most important out of all three carbon TEs for the total carbon emissions from carbon
TEs since PFTP has the potential to cause the highest cumulative carbon emissions and the
highest emission rates, due to its high impacts and short timescales compared to the other
two carbon TEs (Tab. 1).

3.1.3 SSP5-8.5

Under SSP5-8.5, tipping of AMAZ and PFTP becomes extremely likely, with each of them
being triggered in 98% of the ensemble members, while tipping of PFAT becomes virtually
certain as it is triggered in all ensemble members.

The high confidence in the tipping of PFTP under SSP5-8.5 is reflected by the 5th percentile
of cumulative carbon emissions from PFTP, which strongly increases between 2160 and 2285,
followed by a more gradual increase until 2500, reaching 129 GtC, while the median and the
95th percentile reach 186GtC and 244GtC in 2500 respectively (Fig. 19). Compared to
SSP2-4.5, carbon emissions from PFTP occur more early under SSP5-8.5, with the highest
potential for them to occur between 2050 and 2250, as indicated by the 95th percentiles of
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Figure 19: Cumulative carbon emissions, CO2 emissions, and CH4 emissions from PFTP, AMAZ
and PFAT under SSP5-8.5. Median and very likely range (5th to 95th percentile) together with
randomly chosen ensemble members.

CO2 and CH4 emissions. Despite the high confidence in the occurrence of carbon emissions
from PFTP, their timing remains uncertain as indicated by the medians of CO2 and CH4

emissions, which remain near zero at all times. Some randomly chosen ensemble members
that have not been triggered under SSP2-4.5 feature much higher emission rates of up to
50 GtC yr−1 of CO2, that are by far exceeding the 95th percentile of CO2 emissions from
PFTP.

For carbon emissions from AMAZ under SSP5-8.5, we find a behaviour comparable to PFTP
with high confidence in the occurrence of carbon emissions from AMAZ, reflected by the 5th
percentile and the median reaching 32GtC and 52GtC in 2500, while the 95th percentile
reaches 73GtC (Fig. 19). However, different to PFTP, there is more certainty about the
timing of CO2 emissions, as they seem to cluster around 2120, where the median of CO2

emissions reaches maximum values of 0.22 GtC yr−1. This increase in the median seems to be
caused by overlapping emission peaks of the ensemble members, as indicated by the randomly
chosen ensemble members. Given that the range of possible threshold temperatures is larger
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for AMAZ compared to PFTP, this overlap must be caused by comparably longer timescales
of AMAZ (Tab. 1). Further analysis of the emission peaks from PFTP and AMAZ is given
below.

As for SSP2-4.5, there is high confidence in the occurrence of carbon emissions from PFAT
under SSP5-8.5, with the 5th percentile and the median of cumulative emissions reaching
71GtC and 121GtC in 2500, while the 95th percentile reaches 185GtC (Fig. 19). These
estimates are much higher than for SSP2-4.5, which can be explained by the feedback of
PFAT being temperature dependent and higher temperatures are reached under SSP5-8.5
(Fig. 14). Most ensemble members predict that cumulative carbon emissions from PFAT
reach their maximum before 2300, which is reflected by all three percentiles showing nearly
no increase after that time, and only two of the randomly picked ensemble members featuring
an increase of cumulative carbon emissions from PFAT after 2300 (Fig. 19). Consistent with
the maximum impact from PFAT being reached mostly before 2300 under SSP5-8.5, CO2

and CH4 emissions are higher and occur more early compared to SSP2-4.5 but do also fade
out earlier, with the median of CO2 emissions reaching zero already in 2230 (compare Fig.
18 and Fig. 19).

The behaviour of the total carbon emissions from the carbon TEs under SSP5-8.5 depicted
in Fig. 15 can again be explained by analysing the carbon emissions from the individual
carbon TEs. The decreased uncertainty in the magnitude of cumulative carbon emissions
from all three carbon TEs compared to SSP2-4.5 can be linked to increased confidence in the
occurrence of carbon emissions from PFTP and AMAZ. The uncertainty about the magnitude
and timing of carbon emissions from all carbon TEs is explained by the emissions peaks from
PFTP and AMAZ.

We analyse the entire coupled ensemble under SSP5-8.5 to gain a better understanding of
the maximum CO2 and CH4 emission rates from the carbon TEs that are possible. The CO2

and CH4 emission rates from PFTP have the potential to be around two and three times
higher than the respective maximum anthropogenic emissions under SSP5-8.5 (Tab. 3), while
the maximum CO2 emission rates from PFAT and AMAZ remain one magnitude lower than
the maximum anthropogenic emissions. Nevertheless, due to the comparably large fraction
of CH4 emissions of the total carbon emissions from PFAT (20%), maximum CH4 emission
rates from PFAT are almost as high as those from PFTP. However, the ensemble means of
the maximum CO2 and CH4 emission rates from the carbon TEs are much lower. Only the
average peak emissions of CO2 from PFTP are within the same order of magnitude as the
anthropogenic maximum CO2 emission rates, while the average peak CO2 emissions from
PFAT and AMAZ remain two magnitudes lower. Average peak emissions of CH4 from PFAT
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Source Max. CO2 Ems (GtC yr−1) Max. CH4 Ems (MtCH4 yr−1) Year of Max. CO2 Ems

SSP 35.6 598 2090
PFTP 14.1 (0.8 – 60) 448 (6.5 – 1883) 2127 (2045 – 2488)
AMAZ 1.7 (0.3 – 5.24) – 2132 (2045 – 2472)
PFAT 1.2 (0.3 – 4.25) 408 (84 – 1512) 2098 (2046 – 2300)

Table 3: Magnitude and timing of maximum CO2 and CH4 emissions under SSP5-8.5 from the
SSP scenario and from all three carbon TEs. For the carbon TEs, the mean estimate from the
coupled ensemble is given together with the maximum and the minimum value (written as: mean
(min—max)), excluding ensemble members in which the respective TE is not triggered.

and PFTP are only slightly lower than the maximum anthropogenic CH4 emission rates.
The timing of the maximum emission rates from carbon TEs remains highly uncertain, but
there seems to be clustering of maximum emissions from all three carbon TEs around the
beginning of the 22nd century.

3.2 Atmospheric Concentrations of Carbon Dioxide and Methane

The carbon emissions from the carbon TEs discussed in the sections above result into
generally higher atmospheric concentrations of CO2 and CH4 (Fig. 20). While the differences
between the CO2 concentrations of the coupled and the uncoupled ensemble generally increase
over time, CH4 concentrations of the coupled ensemble return to the concentrations of the
uncoupled ensemble around 2350 under all SSPs. This can be explained by carbon emissions
from the carbon TEs returning to zero around that time (Fig. 15) and the short atmospheric
lifetime of CH4 compared to CO2 (Smith et al., 2021).

Another notable difference between the two GHGs is that the CH4 increase due to carbon
emissions from carbon TEs is more significant than the CO2 increase, with the median and
for SSP2-4.5, SSP3-7.0, and SSP5-8.5 even the 5th percentile of CH4 concentrations from the
coupled ensemble lying above the 95th percentile of the uncoupled ensemble (Fig. 20). Under
SSP3-7.0 and SSP5-8.5, the maximum atmospheric CH4 concentrations are almost doubled by
carbon TEs. On the contrary, the median and the 5th percentile of CO2 concentrations from
the coupled ensemble are always within the 5th to 95th percentile range of the uncoupled
ensemble.

That high cumulative carbon emissions from carbon TEs become possible even under low
emission SSPs, but only become common under high emissions SSPs, is reflected by the
atmospheric CO2 concentrations. Especially under SSP1-1.9, SSP1-2.6 and SSP2-4.5 the
distributions of atmospheric CO2 concentrations are skewed towards higher values, with
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Figure 20: Atmospheric concentrations of CO2 and CH4 of the coupled and the uncoupled model
ensemble for the Tier1 SSPs.

deviations between the percentiles from both ensembles increasing towards the 95th percentile
(Fig. 20).

Consistent with the timing of the carbon emissions from the carbon TEs (Fig. 15) the
atmospheric concentrations of CO2 and CH4 from the coupled ensemble start to exceed the
concentrations from the uncoupled ensemble earlier under SSPs with higher anthropogenic
carbon emissions (Fig. 20). As the differences in atmospheric GHG concentrations between
the coupled and the uncoupled ensemble are directly resulting into GMST differences, we
limit the more detailed analysis to the inspection of GMST (Sec. 3.3).

3.3 Temperature Impact of Carbon Tipping Elements

The carbon TEs are causing an increase in global warming (Fig. 21). Under the low emission
scenarios SSP1-1.9 and SSP1-2.6, high temperature increases from carbon TEs are possible
but less common, with the temperature distributions skewed towards higher values. No
temperature increase from carbon TEs remains possible under those scenarios, as it is still
within the very likely range (Tab. 2). The median temperature increase from carbon TEs
also remains relatively small, reaching maximum values of 0.05°C and 0.1°C in 2300 under
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Figure 21: GMST relative to the 1850-1900 period of the coupled and the uncoupled ensemble for
the Tier1 SSPs, together with the historical evolution.

SSP1-1.9 and SSP1-2.6 respectively. However, the upper end of the very likely range of the
temperature increase from carbon TEs reaches maxima of 0.29°C in 2300 under SSP1-1.9
and 0.53°C in 2500 under SSP1-2.6, which would mean a 26% and 32% temperature increase
respectively compared to the median of the uncoupled ensemble.

The highest long-term temperature increase from carbon TEs becomes possible under SSP2-
4.5, with the upper end of the very likely range reaching 0.91°C in 2500 (Tab. 2), which
constitutes a temperature increase of 29% compared to the median of the uncoupled ensemble.
The temperature distribution is also skewed towards higher values by the impact of carbon
TEs under SSP2-4.5 (Fig. 21), however high temperature increases become more common, as
reflected by the median temperature increase, which reaches its maximum of 0.22°C in 2300
(Tab. 2).

High temperature impacts from carbon TEs become even more common under SSP3-7.0 and
SSP5-8.5, which is indicated by the median and the 5th percentile of the temperature increase
being higher than under SSP2-4.5 (Tab. 2). Therefore, the temperature distributions are less
skewed but rather entirely shifted towards higher temperatures by carbon TEs (Fig. 21).

The highest short-term temperature increase from carbon TEs becomes possible under the
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Scenario Year 5th [°C] 50th [°C] 95th [°C]

SSP1-1.9 2100 1.018± 0.007, 1.013 1.489± 0.007, 1.452 2.356± 0.022, 2.217
SSP1-1.9 2300 0.703± 0.005, 0.7 1.196± 0.007, 1.147 2.483± 0.034, 2.21
SSP2-4.5 2100 2.138± 0.015, 2.102 2.995± 0.011, 2.869 4.539± 0.023, 4.057
SSP2-4.5 2300 2.096± 0.016, 2.033 3.438± 0.019, 3.189 6.737± 0.063, 5.79

Table 4: Percentiles of the distributions of GMST relative to the 1850-1900 period from the coupled
ensemble (mean ± standard deviation) and the uncoupled ensemble (single value after comma) in
2100 and 2300 corresponding to Fig. 22 and Fig. 23.

high emissions scenarios SSP3-7.0 and SSP5-8.5, with the upper end of the very likely range
reaching 0.94°C and 1.11°C in 2100 under SSP3-70 and SSP5-8.5 respectively. This can
be linked to high CH4 emissions from fast PFAT degradation due to rapidly increasing
temperatures (Fig. 19), which leads to peaks in the atmospheric CH4 concentration anomaly
around 2100 (Fig. 20). However, in agreement with atmospheric CH4 concentrations, this
temperature increase is of limited duration and the upper end of the very likely range decreases
after 2100 under both SSP3-7.0 and SSP-8.5, reaching 0.63°C and 0.47°C respectively in 2500
(Tab. 2). Compared to the median temperature from the uncoupled ensemble, this only
constitutes a temperature increase of 9% for SSP3-7.0 and 6% for SSP5-8.5. The fact that the
maximum temperature increase from carbon TEs is lower under high emission scenarios than
under SSP2-4.5 at the end of the model period despite higher cumulative carbon emissions
(Tab.2) and atmospheric CO2 concentrations (Fig. 20) needs further investigation. An
explanation for this behaviour is the implementation of the forcing relationship translating
atmospheric CO2 and CH4 concentrations to radiative forcing in FaIR. It is approximated by
a logarithmic and a square-root term for CO2 and by a square-root term for CH4, meaning
that the effect of additional atmospheric concentrations of both GHGs on GMST is decreasing
for higher atmospheric concentration levels (Sec. 2.2.2).

The temperature increase from carbon TEs occurs earlier under high emission scenarios (Tab.
2), which can be explained by threshold temperatures of the carbon TEs being crossed earlier
under those scenarios, as the general temperature increase is faster (Fig. 21). Interestingly,
the median temperature increase from carbon TEs is declining towards the end of the model
period under all SSPs (Tab. 2). This can be linked to the decreasing atmospheric methane
concentrations (Fig. 20).

3.3.1 Temperature Distributions in 2100 and 2300

To investigate the shift in the temperature distribution caused by carbon TEs, we create nine
additional coupled ensembles to be able to make statements about the statistical significance
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Figure 22: Distribution of GMST relative to the 1850-1900 period from the coupled and the
uncoupled ensemble in 2100. Bins are 0.1°C wide and the frequency is normalized to give 1 for the
integral over GMST.

Figure 23: Distribution of GMST relative to the 1850-1900 period from the coupled and the
uncoupled ensemble in 2300. Bins are 0.1°C wide and the frequency is normalized to give 1 for the
integral over GMST.
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of our results. As discussed in Sec. 2.4.2, this becomes especially important towards the
high end of the uncertainty range, where model results are less robust. We focus on the
analysis of the temperature distributions under SSP2-4.5, the scenario that current policies
and actions are roughly following (compare Fig. 14 and Climate Action Tracker (2022)), and
under SSP1-1.9, the best case scenario. The year 2100 is chosen since it is a crucial time
horizon in the climate change debate, but as the major share of carbon emissions from carbon
TEs occurs between 2100 and 2300 (Fig. 15), we also investigate the results in 2300. Due to
computational constraints, we only store temperature data of the additional ensembles for
2100 and 2300. Hence, those ensembles are not used in other parts of our analysis.

Consistent with the temperature evolution (Fig. 21), high temperatures become more likely
if carbon emissions from carbon TEs are included under both SSP1-1.9 and SSP2-4.5 in 2100
and even more pronounced in 2300 (Fig. 22, Fig. 23). This results in skewed temperature
distributions towards high temperatures, as low temperatures remain possible within the
coupled ensemble under those scenarios. Hence, additional uncertainty is introduced by the
carbon TEs, decreasing the confidence in the prediction of GMST. We test the statistical
significance of the change in the 5th, the 50th, and the 95th percentile of the temperature
distributions due to carbon emissions from carbon TEs under both SSPs in 2100 and 2300
using a Student’s t−test as described in Sec. 2.6. We find that the increase in all percentiles is
statistically significant at a 99% significance level, except for the increase in the 5th percentile
under SSP1-1.9 (P-value of 0.02 in 2100, and 0.05 in 2300) (Tab. 4 for mean and standard
deviation). The increase in the 5th percentile of GMST due to carbon emissions from carbon
TEs is generally smallest, especially under SSP1-1.9, while the highest increase is observed
for the 95th percentile, being 0.95°C higher in the coupled ensemble in 2300 under SSP2-4.5.

Additional carbon emissions from the carbon TEs cause higher probabilities for the exceedance
of temperature targets. The probability of exceeding 2°C under SSP1-1.9 is increased from
9.86% to 13.5± 0.39% (mean ± standard deviation) in 2100 and from 7.32% to 11± 0.37% in
2300. Under SSP2-4.5, the probability of exceeding 4°C is increased from 5.6% to 11.7±0.26%

in 2100 and from 24.14% to 33.92± 0.49% in 2300. All probability increases are statistically
significant at a 99% significance level according to the Student’s t− test (Sec. 2.6).

3.3.2 Transient Climate Response to Cumulative Emissions

In this section, we analyse if the carbon emissions from the carbon TEs have the potential to
disrupt the near-linear relationship between cumulative anthropogenic CO2 emissions and
GMST, which has again been identified with high confidence by the latest IPCC report (IPCC,
2021) and led to the concept of the TCRE. We limit this analysis to SSP2-4.5, SSP3-7.0, and
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Figure 24: GMST relative to the 1850-1900 period plotted against cumulative anthropogenic CO2

emissions for the coupled and the uncoupled ensemble, together with the historical evolution. The
thin dotted lines represent random ensemble members from the coupled ensemble (red) and the
uncoupled ensemble (black). Values of GMST anomalies and cumulative emissions until the year
2250 have been used, as anthropogenic carbon emissions are close to zero afterwards (Fig. 16).

SSP5-8.5, as SSP1-1.9 and SSP1-2.6 include negative carbon emissions from 2068 and 2076
respectively onwards (Fig. 16), which do not allow for the application of the TCRE concept
at any later times.

The response of GMST to cumulative anthropogenic CO2 emissions is near-linear within the
uncoupled ensemble for all three SSPs (Fig. 24). The impact of carbon TEs is not changing
this linear behaviour significantly throughout the whole ensemble, as it only slightly skews
the distributions of GMST towards higher temperatures, not strong enough to speak of a
super-linearity.

However, carbon TEs can lead to local super-linear behaviour of individual ensemble members
under SSP2-4.5. Out of the five random members from the coupled ensemble under SSP2-4.5
depicted in Fig. 24, the four with the highest temperatures feature triggering of PFAT and
either AMAZ or PFTP or both, whereas only PFAT is triggered in the ensemble member with
the lowest temperatures. The former four ensemble members clearly show a local super-linear
response of GMST to cumulative anthropogenic CO2 emissions around 1400GtC, while all
randomly picked ensemble members of the uncoupled ensemble depict a near-linear response.
Especially triggering of PFTP seems to cause those super-linearities, as it is triggered only in
the three ensemble members which feature a peak in GMST under SSP2-4.5.

Even though all carbon TEs are triggered for all random members of the coupled ensemble

Page 63



Chapter 3 Results

under SSP3-7.0 and SSP5-8.5, their GMST response to cumulative CO2 emissions remains
more gradual. This can be explained by higher anthropogenic CO2 emission rates under these
scenarios compared to SSP2-4.5, which are leading to a faster increase in cumulative CO2

emissions (Fig. 16) and therefore decreased gradients in the GMST response to cumulative
anthropogenic CO2 emissions.

3.4 Probabilities of Triggering Tipping Elements

We now turn to the analysis of the probabilities of triggering the 16 TEs identified by
Armstrong McKay et al. (2022) (Tab. 1) under the Tier1 SSPs and how they are influenced
by additional carbon emissions from the carbon TEs. To compare those probabilities among
the SSPs, we focus on the crossing of 50% probability, where triggering becomes more likely
than not, and 95% probability, where triggering becomes extremely likely.

The effect of carbon TEs on the probabilities of triggering under the different SSP scenarios
is clearly visible, with triggering getting more likely more early if carbon emissions from
carbon TEs are included (Fig. 25, Fig. 26). On average, TEs become more likely than not
to be triggered 9.3 years earlier and extremely likely 4.3 years earlier if carbon emissions
from carbon TEs are included. This effect becomes more pronounced towards the end of
the prediction period, since GMST is generally increasing slower at that time, which means
it takes longer for the uncoupled ensemble to reach the same temperatures as the coupled
ensemble (Fig. 21). Especially TEs within the cryosphere can become more likely than not
to be triggered decades earlier, if carbon emissions from carbon TEs are included. EAIS
and AWSI are crossing the 50% probability of triggering 25 years and 19 years earlier under
SSP5-8.5 respectively, AWSI is crossing it 47 years earlier under SSP3-7.0, EASB is crossing
it 26 years earlier under SSP2-4.5, and GLCR is crossing it 348 years earlier under SSP1-2.6
(Fig. 25). However, there does not seem to be a preference for cryospheric TEs to become
extremely likely to be triggered much earlier due to carbon emissions from carbon TEs.
The TEs for which we observe triggering becoming extremely likely more than a decade
earlier if carbon TEs are included are AMAZ, BORF, and PFTP with 18, 12, and 18 years
respectively under SSP5-8.5, and BORF and EASB with 36 and 13 years respectively under
SSP3-7.0. As we do not consider any interactions between the TEs apart from the increase
in GMST from carbon TEs, the fact that crossing of a certain probability level is reached
disproportionally earlier for some TEs if carbon emissions from carbon TEs are included is
solely caused by a favourable combination of the threshold temperature distribution and the
maximum temperatures reached under the respective SSP and should therefore not be over
interpreted.
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Figure 25: Cumulative number of TEs with a more than 50% probability (P) of getting triggered
for the Tier1 SSP scenarios from the coupled and the uncoupled ensemble (upper row) and symbols
of the triggered TEs corresponding to the increase of cumulative TEs in the coupled ensemble (lower
row). Carbon TEs are marked with pink symbols, whereas the other TEs are marked in the colours
suggested by Armstrong McKay et al. (2022), with blue for cryosphere, green for biosphere and
orange for atmospheric or oceanic circulations.
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Figure 26: Cumulative number of TEs with a more than 95% probability (P) of getting triggered
for the Tier1 SSP scenarios from the coupled and the uncoupled ensemble (upper row) and symbols
of the triggered TEs corresponding to the increase of cumulative TEs in the coupled ensemble (lower
row). Carbon TEs are marked with pink symbols, whereas the other TEs are marked in the colours
suggested by Armstrong McKay et al. (2022), with blue for cryosphere, green for biosphere and
orange for atmospheric or oceanic circulations.
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Even though additional probability of triggering caused by carbon emissions from carbon
TEs clearly exists, it remains small compared to the probability of triggering caused by
anthropogenic carbon emissions. Only two TEs become more likely than not and four become
extremely likely to be triggered in addition to the uncoupled ensemble due to the inclusion
of carbon TEs in the sum over all SSPs (Fig. 25, Fig. 26). Carbon TEs do not cause high
enough temperature increases to induce rapid triggering of multiple TEs following the tipping
of the carbon TEs. Partly, this might be due to the fact that PFTP, which causes the highest
carbon emissions of all carbon TEs, is one of the last TEs to be triggered and hence has little
potential to cause earlier triggering of other TEs (Fig. 25). Moreover, even if all carbon TEs
are extremely likely to be triggered, they only cause an increase of GMST of up to 0.4°C in
the median under SSP5-8.5, which is too small to achieve crossing of multiple TEs threshold
temperatures (Tab. 2).

For the exceedance of the 50% probability of triggering, we observe clustering of the TEs,
which has the potential to occur earlier if carbon emissions from carbon TEs are included.
The first cluster consisting of four TEs (GRIS, WAIS, REEF, and PFAT) will become more
likely than not to be triggered by 2026, regardless of the emission scenario or whether carbon
emissions from carbon TEs are included or not (Fig. 25). Three more TEs forming the
second cluster (BARI, LABC and GLCR) exceed the 50% probability of being triggered
before 2050 under SSP2-4.5, SSP3-7.0 and SSP5-8.5. This also happens under SSP1-2.6, but
much delayed and can be partly avoided under SSP1-1.9 since only BARI becomes more
likely to be triggered than not in 2031. The third cluster of seven TEs (SAHL, EASB, AMAZ,
BORF, AMOC, TUND, and PFTP) is crossing the 50% probability of triggering between
2050 and 2100 under SSP5-8.5 and SSP3-7.0. This can be partly avoided under SSP2-4.5 with
only SAHL and EASB and if carbon emissions from carbon TEs are included also AMAZ
and BORF becoming more likely than not to be triggered until 2500. Under SSP1-1.9 and
SSP1-2.6, none of the TEs from the third cluster becomes more likely to be triggered than
not, independent of carbon emissions from the carbon TEs. The two remaining TEs AWSI
and EAIS do also exceed the 50% probability of being triggered under SSP5-8.5 until 2300,
while this is only the case for AWSI under SSP3-7.0. Hence, all 16 TEs are more likely than
not to be triggered under SSP5-8.5, 15 under SSP3-70, eleven (nine) under SSP2-4.5, seven
under SSP2-4.5 and five under SSP1-1.9 including (not including) the carbon emissions from
carbon TEs.

As expected, less TEs are exceeding the 95% probability of being triggered than the 50%
probability. No TEs become extremely likely to be triggered under SSP1-1.9 and SSP1-2.6,
regardless of the carbon emissions from carbon TEs (Fig. 26). Under SSP2-4.5, four TEs
(BARI, REEF, PFAT, and WAIS) and, if carbon emissions from the carbon TEs are included,

Page 67



Chapter 3 Results

Figure 27: Probabilities of triggering the TEs until 2500 under SSP1-1.9. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
probability is crossed, with purple including carbon emissions from carbon TEs and black not.

GRIS and GLCR become extremely likely to be triggered. In addition, LABC, SAHL, EASB,
and BORF and, if carbon emissions from the carbon TEs are included, AMAZ become
extremely likely to be triggered under SSP3-7.0. PFTP and, if carbon emissions from carbon
TEs are accounted for, TUND only become extremely likely to be triggered under SSP5-8.5.
The cumulative TEs reaching probabilities of being triggered above 95% are increasing more
smoothly over time, not exhibiting any clustering.

In the next sections, we analyse the probabilities of triggering and the effect of carbon TEs
on them in more detail for all Tier1 SSPs. For completeness, we present the probabilities of
triggering at the end of our model period in 2500. However, the increase in probabilities of
triggering after 2200 is only 2% on average over all SSPs and TEs in the uncoupled ensemble.
Therefore, we also provide results of the probabilities of triggering for 2200 in the Appendix.

3.4.1 SSP1-1.9

Out of all SSPs, this is the one with the lowest risk of triggering multiple TEs, with 28%
probability of triggering on average over all TEs if carbon emissions from carbon TEs are
not included. Nevertheless, the five TEs REEF, WAIS, PFAT, GRIS and BARI become
more likely than not to be triggered until 2031 under SSP1-1.9, regardless of the temperature
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impact from carbon TEs (Fig. 27). Furthermore, REEF, WAIS, PFAT, and, if carbon
emissions from carbon TEs are included, BARI even become likely to be triggered. Except for
LABC, with a probability of getting triggered just below 50%, all other TEs are unlikely to
be triggered under SSP1-1.9. Triggering of AMAZ, AWSI, EAIS and PFTP is even extremely
unlikely under SSP1-1.9. EASB and SAHL only remain extremely unlikely to be triggered if
carbon emissions from carbon TEs are not included.

The increase in probabilities of triggering caused by carbon TEs remains relatively small under
SSP1-1.9, with on average 1.1 percent points (pp) additional probability. The maximum
additional probability of getting triggered is found for GLCR with 2.8 pp. The minimum
additional probability of getting triggered is found for PFAT with 0 pp. This makes sense,
as PFAT is in nearly all cases the first carbon TE to be triggered (compare threshold
temperatures in Tab. 1). Hence, no carbon emissions from the carbon TEs are emitted before
PFAT is triggered, and the temperatures stay the same in the coupled and the uncoupled
ensemble.

The small increase in probabilities of triggering caused by carbon TEs can be explained
by the general decease in temperatures under SSP1-1.9 after 2050 (Fig. 21). At this time,
the temperature increase from carbon TEs remains small (Tab. 2) and higher temperature
increases at later times have less potential to cause maximum temperatures that would lead
to additional probability of triggering (Fig. 21).

3.4.2 SSP1-2.6

Compared to SSP1-1.9, the risk of triggering multiple TEs is slightly increased under SSP1-2.6,
with 38% probability of triggering on average over all TEs if carbon emissions from carbon
TEs are not included. The five TEs PFAT, REEF, GRIS, WAIS, and BARI become likely
and LABC and GLCR become more likely than not to be triggered, regardless of carbon
emissions from carbon TEs (Fig. 28). All other TEs remain unlikely to be triggered, but
only AWSI, EAIS and PFTP are extremely unlikely to be triggered under SSP2-4.5.

The increase in probability of triggering caused by carbon emissions from carbon TEs becomes
more pronounced compared to SSP1-1.9, with triggering becoming on average 2.3 pp more
likely. The maximum increase in probability of getting triggered of 4.5 pp is observed for
GLCR, with increases in probability of triggering above 3 pp also found for EASB and SAHL.

The increased additional probability of triggering caused by carbon TEs under SSP1-2.6
compared to SSP1-1.9 can partly be explained by generally higher temperatures, causing
higher carbon emissions from carbon TEs (Fig. 21, Tab. 2). In addition, the reduction of
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Figure 28: Probabilities of triggering the TEs until 2500 under SSP1-2.6. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
probability is crossed, with purple including carbon emissions from carbon TEs and black not.

GMST due to negative emissions is less drastic under SSP1-2.6, with the peak temperature of
the median occurring in 2070 and temperature pathways with steadily increasing temperatures
becoming more likely, as indicated by the monotonically increasing 95th percentile of GMST
in both ensembles (Fig 21). Therefore, temperature increases from carbon TEs have higher
potential to cause maximum temperatures than under SSP1-1.9.

3.4.3 SSP2-4.5

Going from SSP1-2.6 to SSP2-4.5 nearly doubles the risk of triggering multiple TEs, with
65% probability of triggering on average over all TEs if carbon emissions from carbon TEs
are not included. The four TEs BARI, REEF, PFAT, and WAIS become extremely likely
to be triggered under SSP2-4.5, with GRIS and GLCR becoming extremely likely as well if
carbon emissions from carbon TEs are included (Fig. 29). SAHL and, if carbon emissions
from carbon TEs are included, EASB become likely to be triggered. Additional carbon
emissions from carbon TEs also lead to AMAZ and BORF becoming more likely than not
to be triggered. Only AWSI, EAIS, and, if carbon emissions from carbon TEs are not
accounted, for PFTP remain unlikely to be triggered, as TUND and AMOC are exceeding
33% probability of getting triggered in both ensembles. Triggering of EAIS remains extremely
unlikely only if carbon emissions from the carbon TEs are not included.
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Figure 29: Probabilities of triggering the TEs until 2500 under SSP2-4.5. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
and the 95% probability are crossed, with purple including carbon emissions from carbon TEs and
black not.

The increase in probabilities of triggering caused by carbon emissions from carbon TEs is
highest under SSP2-4.5, with 3.3 pp additional probability on average over all TEs. The
maximum increase is observed for BORF, with the probability of triggering being 7.6 pp
higher if carbon emissions from carbon TEs are included. Increases in the probability of
triggering due to additional carbon emissions from carbon TEs above 5 pp are also found for
TUND, SAHL, PFTP, EASB, and AMAZ.

That the additional probability of triggering TEs is highest under SSP2-4.5 matches our
finding that the highest long-term temperature increase from carbon TEs is possible under
this scenario (Tab. 2). Furthermore, GMST is generally increasing over time, which means
that emissions from carbon TEs can produce temperature maxima when they occur, which
is not the case for lower emission scenarios (Fig. 21). Moreover, there is less potential for
increased probabilities of triggering under higher emission scenarios, since probabilities near
100% are often reached even without additional carbon emissions from carbon TEs (see
below).

Interestingly, medium probabilities of triggering get amplified stronger by carbon emissions
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Figure 30: Probabilities of triggering the TEs until 2500 under SSP3-7.0. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
and the 95% probability are crossed, with purple including carbon emissions from carbon TEs and
black not.

from carbon TEs than very high or very low probabilities, which is most clearly visible under
SSP2-4.5 (Fig. 29). This behaviour is caused by the mean threshold temperature having the
highest probability of getting sampled (Fig. 8). Therefore, the temperature increase from
carbon TEs has the highest potential to increase tipping probabilities if the GMST increase
stops around the mean threshold temperature of a TEs, where tipping of the respective TE
in about half of the ensemble members can be expected.

3.4.4 SSP3-7.0

Under this scenario, triggering multiple TEs becomes very likely, with a probability of
triggering of 92% on average over all TEs if carbon emissions from carbon TEs are not
accounted for. Except for EAIS and, if carbon emissions from carbon TEs are not accounted
for, AWSI, all TEs become likely to be triggered under SSP3-7.0, and the ten TEs BARI,
REEF, WAIS, PFAT, GLCR, GRIS, LABC, SAHL, EASB, and BORF become extremely
likely to be triggered, with AMAZ only becoming extremely likely to be triggered if carbon
emissions from carbon TEs are included (Fig. 30). Only EAIS is not becoming more likely
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Figure 31: Probabilities of triggering the TEs until 2500 under SSP5-8.5. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
and the 95% probability are crossed, with purple including carbon emissions from carbon TEs and
black not.

to be triggered than not, with its probability of triggering remaining just below 50%.

The additional probability of triggering from carbon TEs is only 1 pp on average over all
TEs under SSP3.7.0 since most TEs become extremely likely to be triggered even without
considering additional carbon emissions from carbon TEs (Fig. 30). The highest increase in
probability of triggering is again found for the TEs with medium tipping probability, namely
EAIS and AWSI, with a 4.4 pp and 4.6 pp increase respectively.

3.4.5 SSP5-8.5

Triggering of multiple TEs becomes extremely likely under this scenario, since the probability
of triggering is 95% on average over all TEs if carbon emissions from carbon TEs are not
included. Except for EAIS, all TEs become likely to be triggered under SSP5-8.5 and the
twelve TEs AMAZ, BARI, BORF, EASB, GLCR, GRIS, LABC, PFAT, PFTP, REEF, SAHL,
and WAIS become extremely likely to be triggered (Fig. 31). If carbon emissions from carbon
TEs are included, TUND is also becoming extremely likely to be triggered. The probability
of triggering EAIS is remaining just under 66%.
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Even though the highest short-term temperature increase from carbon TEs of 1.1°C in 2100
becomes possible under SSP5-8.5 (Tab. 2), the mean additional probability of triggering
caused by carbon TEs is smallest out of all SSPs, making triggering on average only 0.44 pp
more likely. This is due to rapidly increasing global warming after 2100 (Fig, 21), leading
to most TEs becoming extremely likely to tip even without the effect of carbon TEs. The
maximum increase in probability of triggering due to carbon emissions from carbon TEs
under SSP5-8.5 is found for EAIS, which becomes 2.5 pp more likely to be triggered.
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4 Discussion

Here we compare our results to the literature to examine whether our model approach is
appropriate, to point out differences and similarities compared to previous studies, and to
put our results into context to make them more tangible.

4.1 Performance of the Carbon Tipping Elements Model

The behaviour of the carbon TEs modelled by CTEM is generally matching the underlying
estimates from Armstrong McKay et al. (2022). Threshold temperatures and impacts of all
three carbon TEs are sampled directly from the respective probability distributions fitted to
those estimates, and do therefore match them by definition (Sec. 2.3). The only parameter
of CTEM that needs calibration and is sometimes deviating from those estimates is the
timescale of tipping. Especially for PFAT those deviations matter, as carbon is released
too late, which leads to a gap between observed and expected cumulative emissions in 2100
(Fig. 6), which is closed until 2300. Therefore, impacts from the carbon TEs within the
21st and the 22nd century might be slightly underestimated, especially the impacts in 2050
that stay very low under all SSPs (Tab. 2). In the detailed inspection of the results from
CTEM under SSP1-1.9, SSP2-4.5, and SSP5-8.5, the difference in the nature of the carbon
TEs becomes evident, with carbon emissions from PFAT being released gradually, whereas
the carbon emissions from AMAZ and PFTP are more abrupt (Fig. 17, 18, and 19). This is
in line with PFAT amplifying PFGT, which is a threshold-free feedback to GMST, whereas
carbon emissions from AMAZ and PFTP are released independently of GMST once they are
triggered (Tab. 1).

4.2 Carbon Emissions from Carbon Tipping Elements

The impacts from the carbon TEs estimated in this study remain somewhat speculative,
as there is only limited confidence about the actual existence of tipping points within the
carbon TEs, with low confidence for PFTP and medium confidence for PFAT and AMAZ
(Tab. 1). The distinction between PFGT, PFAT and PFTP made by Armstrong McKay
et al. (2022) for permafrost thaw also remains questionable. Most studies, including the
latest IPCC report, assume that permafrost thaw can be divided into gradual and abrupt
thaw processes, corresponding to PFGT and PFAT, and do not mention permafrost collapse
due to compost bomb instabilities (PFTP) (e.g., Canadell et al., 2021; Turetsky et al., 2020;
Schuur et al., 2015; Wang et al., 2023). Since PFTP causes the highest carbon emissions out
of all three carbon TEs with up to 250 GtC (Tab. 1), there is a good chance that the impact
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of tipping elements within the carbon cycle is clearly less severe than found in this study if
PFTP does not prove to include a tipping point.

However, additional carbon emissions released by PFGT under continued global warming of
up to 260GtC (Tab. 1) need to be expected, which are not considered in this study. One
reason to exclude PFGT is that it is not assumed to include tipping points, but to be a
threshold-free feedback to global warming (Armstrong McKay et al., 2022). Furthermore,
sophisticated models of PFGT already exist (e.g., Gasser et al., 2018; Burke et al., 2020),
hence it would not be appropriate to represent PFGT with a simple conceptual model like
CTEM. A reasonable possibility to include PFGT in our analysis would be to use the well
known reduced complexity climate model MAGICC (Meinshausen et al., 2011) together with
its permafrost submodule (Schneider von Deimling et al., 2012) instead of FaIR. However,
this would increase the complexity of our model approach significantly.

It is challenging to compare the carbon emissions from carbon TEs identified by us to other
studies, as this is to the best of our knowledge the first study to investigate the impact
of all TEs within the carbon cycle. Other studies are only analysing single TEs, e.g., Cox
et al. (2004) and Parry et al. (2022) for AMAZ or Schneider von Deimling et al. (2015) and
Gasser et al. (2018) for permafrost thaw as a whole. Since the individual carbon emissions
from the carbon TEs modelled by CTEM agree with the estimates of Armstrong McKay
et al. (2022), we would only reproduce their analysis by comparing our individual carbon
emission estimates to the literature. Therefore, we spare this comparison here and give a
detailed overview of estimated carbon emissions from the individual carbon TEs in Sec. 1.3.
Nevertheless, it must be noted that even though the uncertainty ranges of the carbon impacts
identified by Armstrong McKay et al. (2022) based on numerous studies are large (factor
two for PFTP and AMAZ, factor three for PFAT), they do not include all estimates from
the literature. Especially, the lower bounds of AMAZ and PFTP are questionable. Carbon
emissions from the Yedoma region, which make up for the major part of PFTP emissions, of
only 23GtC in 2300 under RCP5-8.5 have been found by an observations-based modelling
study (Schneider von Deimling et al., 2015). This is much lower than the minimum carbon
emissions of 100GtC from the Yedoma region assumed by Armstrong McKay et al. (2022),
which led to an estimated minimum impact of PFTP of 125GtC. The minimum impact of
30GtC for AMAZ might also be too high since no substantial carbon loss from AMAZ is
observable in CMIP6 models, even if localized dieback occurs (Parry et al., 2022).

A more novel result from CTEM are the emission rates of the carbon TEs. The extremely
high maxima of emission rates from PFTP, with CO2 emissions of up to 60 GtC yr−1 (Tab.
3), are most likely unrealistic, since much lower emission rates of only 2− 2.8 GtC yr−1 were
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found by Khvorostyanov et al. (2008). Maximum emission rates from AMAZ are much lower,
but with CO2 emissions of up to 5.24 GtC yr−1 still substantial. Such high emission rates
from PFTP and AMAZ become possible since we assume that timescales and impacts of
both TEs are not correlated. Hence, combinations of short timescales and high impacts are
possible, which might be unrealistic. Even though the carbon emission rates of PFAT are
much smaller, it still has the potential to produce maximum CH4 emissions nearly three
times higher than the maximum anthropogenic CH4 emissions (Tab. 3). This is explained by
the high share of CH4, which we assume to make up for 20% of the total carbon emissions
from PFAT, in line with Turetsky et al. (2020). On the one hand, it is a major limitation of
CTEM that it does not account for the temporal variability of the CH4 emission fractions of
PFTP and PFAT. On the other hand, we regard the temporal evolution of this fraction as
too poorly constrained to be prescribed in CTEM since current model studies are rare and
vary greatly (compare Turetsky et al. (2020) and Schneider von Deimling et al. (2015)).

4.3 Uncertainties in the Temperature Response

FaIR produces very high GMST anomalies towards the end of the model period, with the
95th percentile reaching 15.8°C in 2500 under SSP5-8.5 in the uncoupled ensemble (Fig. 21).
Such high temperature increases are most likely unrealistic and caused by the ECS of FaIR
being poorly constrained towards the upper end, with the very likely range reaching 6.6°C
whereas the IPCC and CMIP6 models estimate it to reach only 5°C and 5.4°C respectively
(Fig. 1).

There is high uncertainty about the magnitude of additional warming from carbon TEs (Tab.
2). For the low to medium emission scenarios (SSP1-1.9 to SSP2-4.5) this uncertainty is
mainly caused by the uncertainty about whether carbon TEs are triggered or not. This is
especially pronounced under the “middle of the road” scenario SSP2-4.5 where tipping of
AMAZ and PFTP is about as likely as not (Fig. 29), with a very likely range of 0.03°C to
0.91°C additional warming from carbon TEs in 2500. Under the high emission scenarios
SSP3-7.0 and SSP5-8.5, tipping of all three carbon TEs becomes very or even extremely
likely (Fig. 30, Fig. 31). Hence, uncertainties in the additional warming from carbon TEs
must be caused by the uncertainty about their impacts in terms of total carbon emissions.

4.4 Questioning the Planetary Threshold Hypothesis

Our results do not confirm the hypothesis of a planetary threshold temperature formulated
by Steffen et al. (2018). While Steffen et al. (2018) report an additional warming of 0.14°C
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(0.07− 0.27°C) from permafrost thaw and Amazon rainforest dieback in 2100 for a ∼ 2°C
warming, we find lower warming from the carbon TEs with 0.07°C (0-0.24°C) being reached
under SSP1.2.6 in 2100 with a warming of 1.8°C in the median of the uncoupled ensemble.
However, those numbers need to be compared carefully since Steffen et al. (2018), unlike us,
also consider PFGT, which increases their estimate. Furthermore, we only find a local super-
linear responses of GMST to cumulative CO2 emissions for individual ensemble members
under SSP2-4.5 and not across the whole ensemble under all SSPs crossing 2°C, which would
be expected in case of a planetary threshold (Fig. 24). Partly this can be explained by the
large uncertainty in the threshold temperatures of the carbon tipping elements, which do
not cluster around a certain value (Tab. 1), hence no synchronous tipping can be expected.
However, we do not explicitly include additional carbon feedbacks the planetary threshold
hypothesis is based on, namely PFGT, BORF, relative weakening of ocean and land carbon
sinks, and increased bacterial respiration in the ocean. Therefore, our study alone cannot
disprove the planetary threshold hypothesis, but it does cast doubt on it.

4.5 Scientific Context of Probabilities of Triggering Tipping Elements

Our estimates of probabilities of triggering are generally higher than the values reported by
Kriegler et al. (2009), which have found much use in the climate tipping points literature (e.g.,
Lontzek et al. (2015), Cai et al. (2015), Cai et al. (2016)). Ranges of probabilities of triggering
are provided for the year 2200 under three warming scenarios: a low temperature corridor
comparable to SSP1-1.9, a medium temperature corridor comparable to SSP2-4.5 and a high
temperature corridor comparable to SSP3-7.0. For the medium temperature corridor, Cai
et al. (2016) infer mean probabilities of triggering from the ranges given in Kriegler et al.
(2009) of 22% for AMOC, 52% for GRIS, 34% for WAIS, and 48% for AMAZ, which can be
compared to our estimates in 2200 under SSP2-4.5 (without carbon TEs impacts) of 38% for
AMOC, 94% for GRIS, 98% for WAIS, and 43% for AMAZ (Fig. 34).

Those deviations can be explained by the new scientific literature being published since
Kriegler et al. (2009), which give reason for the threshold temperature estimates from
Armstrong McKay et al. (2022) our calculation of triggering probabilities is largely based on.
The increased triggering probability for the AMOC can be linked to various studies reporting
unrealistic stability of the AMOC in GCMs (e.g., Liu et al. (2017)), together with increasing
evidence for the proximity of a tipping point for AMOC (Boers, 2021). New indications
for the proximity of a tipping point for GRIS are also derived from observations of ice loss
(King et al., 2020; Boers and Rypdal, 2021), with recent modelling studies confirming this
(Van Breedam et al., 2020; Robinson et al., 2012). Loss of WAIS is becoming observable
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(Shepherd et al., 2019) and a tipping point might already be crossed with several glaciers in
the Amundsen Sea currently undergoing MISI (Rignot et al., 2014).

4.6 No Tipping Cascades Triggered by Carbon Tipping Elements

Even though we find an increase in the probabilities of triggering caused by the additional
carbon emissions from carbon TEs, this impact is not strong enough to trigger any tipping
cascades. Additional carbon emissions from carbon TEs only cause existing clusters of TEs to
be triggered more early, but are not producing any additional clusters of triggering (Fig. 25).
Even under SSP2-4.5, which features the highest long-term increase in temperature of up to
0.91°C due to carbon emissions from carbon TEs, the additional probability of triggering
caused by this temperature increase is only 3.3 pp on average and only two TEs become
more likely than not to be triggered if this temperature increase is accounted for. Despite
our finding that the impact from carbon TEs alone is too small to trigger tipping cascades,
tipping cascades might still emerge as major physical interactions between TEs aside from
carbon emissions are not accounted for in this study (Wunderling et al., 2021).

4.7 Implications of the Triggering Probabilities

As triggering probabilities are increasing strongly with anthropogenic GHG emissions, our
results underline the clear urge for emission reduction to avoid climate tipping points also
emphasized by earlier studies (e.g., Lenton et al. (2019) and Cai et al. (2015)). However, it
might already be too late to opt for emissions pathways that are safe with regard to triggering
any TE since triggering of GRIS, PFAT, REEF, WAIS and BARI becomes more likely than
not until 2031, regardless of the chosen SSP (Fig. 25).

Therefore, even under SSP1-1.9 drastic impacts from tipping of several TEs must be expected.
Dieback of low-latitude coral reefs becomes likely, which would severely impact biodiversity
and directly affect the livelihoods of ∼ 500million people (Wilkinson, C., 2004) (Fig. 27).
Several meters of SLR become possible due to tipping of GRIS and WAIS, which store a SLE
of 7.42 m and 4.3 m respectively (Fretwell et al., 2013; Morlighem et al., 2017). Furthermore,
permafrost carbon emissions are likely to be amplified by ∼ 50% due to abrupt thaw processes
(Armstrong McKay et al., 2022) and winter sea ice in the Barents Sea is likely to be lost,
leading to changes in European weather (Smedsrud et al., 2013).

Under SSP1-2.6, warming is limited to just below 2°C (Fig. 14), which can be achieved if
current climate change mitigation pledges are fulfilled on time (Meinshausen et al., 2022).
Compared to SSP1-1.9, the average triggering probability is increasing by 10 pp to 38%.
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Additional impacts from glacier retreat causing water shortage for up to 8.9% of the global
population who depend on glacier discharge (Schaner et al., 2012), and LABC collapse,
causing a regional cooling over the North Atlantic and potentially affecting the AMOC
(Caesar et al., 2018), become more likely than not to occur (Fig. 28). However, especially
tipping of TEs within the cryosphere might be less likely than assumed by us under SSP1-1.9
and SSP1-2.6 with peak warming reached within the 21st century (Fig. 14). The threshold
temperature of slow-onset TEs like ice sheets can be exceeded temporarily without triggering
the TE if the overshoot time is short compared to the characteristic timescale of the TE
(Ritchie et al., 2021), which is not accounted for in this study.

A continuation of current politics and actions would lead to a warming of ∼ 2.7°C in 2100
(Climate Action Tracker, 2022), comparable to the one observed under SSP2-4.5 (Fig.14),
which is associated with a drastic increase of average tipping probabilities by 27 pp compared
to SSP1-2.6. The impacts from triggered TEs become much more certain, with six TEs
becoming extremely likely to be triggered if carbon emissions from carbon TEs are included,
and much more numerous with AMAZ, BORF, EASB, and SAHL becoming more likely to be
triggered in addition to TEs previously mentioned (Fig. 29). Sea level rise of several meters
becomes more likely since EASB makes up for major parts of the 19.2 m SLE stored in marine
parts of the EAIS (Fretwell et al., 2013; Stokes et al., 2022). Additional carbon emissions and
a decrease in biodiversity from BORF and AMAZ dieback are about as likely as not to occur
and shifts in the WAM are becoming likely, affecting local communities in the Sahel region
(Nicholson, 2018). Furthermore, the highest long-term temperature increase from carbon
TEs becomes possible under SSP2-4.5 (Tab. 2), causing the highest increase of triggering
probabilities (3.3 pp on average) out of all SSPs. Tipping cascades due to interactions between
TEs not accounted for in this study might become more likely under SSP2-4.5 since tipping
of the AMOC, which acts as the main mediator between different TEs (Wunderling et al.,
2021), becomes about as likely as not to occur. This should encourage increased efforts
of governments worldwide to work towards the timely fulfilment of their climate change
mitigation pledges, since the risk of triggering multiple TEs is reduced significantly when
moving from SSP2-4.5 to SSP1-2.6.

Under the high emission scenarios SSP3-7.0 and SSP5-8.5, nearly all TEs become likely or
even extremely likely to be triggered with average triggering probabilities of 92% and 95%
respectively. Hence, impacts from all TEs must be expected. Tipping of the AMOC into
a weaker state with manifold impacts on the Earth system (Jackson et al., 2015) is about
as likely as not to happen under both scenarios. AWSI is likely to disappear completely,
affecting biodiversity and causing increased heat uptake of the Arctic Ocean (Hankel and
Tziperman, 2021). Carbon emissions of up to 250 GtC from PFTP become very likely, which
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might be partially offset by TUND (Armstrong McKay et al., 2022). Triggering of EAIS is
about as likely as not to occur, which has the potential to increase GMSL by up to 34m
(Fretwell et al., 2013).
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5 Conclusion

We find that the highest long-term temperature increase from carbon TEs among all Tier1
SSPs becomes possible under SSP2-4.5 with 0.16°C (0.03-0.91°C) in 2500. This is due to the
fact that maximum carbon emissions from the carbon TEs become possible under SSP2-4.5
since triggering of PFTP and AMAZ is about as likely as not while triggering of PFAT is
extremely likely. In this case, anthropogenic carbon emissions are increased substantially
by carbon emissions from carbon TEs. Under lower emission scenarios, tipping of AMAZ
and PFTP and therefore high carbon emissions from carbon TEs remain unlikely, limiting
the maximum temperature increase to 0.05°C (0-0.29°C) in 2300 under SSP1-1.9. Under
higher emission scenarios, triggering of PFTP and AMAZ becomes likely (SSP3-7.0) or even
extremely likely (SSP5-8.5), causing maximum carbon emissions to be released from the
carbon TEs, with CO2 emissions of 331 GtC (246-411 GtC) and CH4 emissions of 37.7GtCH4

(24.3-54.7GtCH4) released until 2500 under SSP5-8.5. High CH4 emissions mainly from
PFAT within the 21st and 22nd century are causing maximum temperature increases of 0.4°C
(0.09-1.11°C) under SSP5-8.5 in 2100. However, the temperature increase from carbon TEs
decreases after 2100 under SSP5-8.5 down to 0.18°C (0.08-0.47°C) in 2500 since atmospheric
CH4 concentration anomalies are vanishing and because the CO2 emissions from carbon TEs
are small compared to the anthropogenic emissions.

Carbon emissions from carbon TEs reduce the feasibility of temperature targets, increasing
the probability of exceeding 2°C in 2100 under SSP1-1.9 from 9.86% to 13.5± 0.39%. Under
SSP2-4.5, the probability of exceeding a warming of 4°C in 2100 is increased from 5.6% to
11.7± 0.26%.

Furthermore, carbon TEs have the potential to cause a local super-linear response of GMST
to cumulative anthropogenic CO2 emissions under SSP2-4.5 at around 1400GtC, which
challenges the notion of a linear TCRE. However, such super-linear behaviour has only been
found for individual ensemble members and not across the whole ensemble.

Even though clearly observable, the temperature increase from carbon TEs is not strong
and abrupt enough to produce any tipping cascades, but rather leads to generally higher
probabilities of triggering, making earlier triggering more likely. On average, TEs become
more likely to be triggered than not 9.3 years earlier if carbon emissions from carbon TEs
are accounted for.

Our results underline the urgent need for further reduction of anthropogenic GHG emissions
to avoid crossing of climate tipping points, as triggering of multiple TEs is more likely than
previously assumed (compare Kriegler et al., 2009). Under SSP5-8.5, all TEs become more
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likely than not, and twelve out of 16 even become extremely likely to be triggered. The risk
of triggering multiple TEs is only marginally decreased by moving from SSP5-8.5 to SSP3-7.0,
with the average probability of triggering until 2500 being reduced from 95% to 92%. Current
politics and actions are leading to a warming of ∼ 2.7°C in 2100 (Climate Action Tracker,
2022), comparable to what we expect under SSP2-4.5. This pathway is still highly unsafe
with respect to crossing climate tipping points, as the average probability of triggering until
2500 is 65%. This number is increased by 3.3 pp if carbon emissions from carbon TEs are
included, which is the highest increase of triggering probabilities from carbon TEs out of all
SSPs.

It seems to be too late to opt for emission reductions that keep the world safe from triggering
any TE, since five TEs become more likely than not to be triggered until 2031 even under
SSP1-1.9. Nevertheless, this scenario minimizes the risk of triggering multiple TEs, with an
average triggering probability of 28% until 2500. Yet, it might be politically infeasible to
achieve SSP1-1.9 (Jewell and Cherp, 2020). SSP1-2.6 is potentially a more realistic scenario,
associated with limiting global warming to just below 2°C in 2100, which can be achieved if
current climate mitigation pledges are met in full and timely by all parties (Meinshausen
et al., 2022). This would limit the risk of triggering multiple TEs to an average probability
of triggering until 2500 of 38%, which is increased by 2.3 pp if carbon emissions from carbon
TEs are included. Therefore, moving from current policies to more strict climate policies that
comply with given pledges would reduce the risk of triggering TEs on average by 28 pp and
decrease the additional warming from carbon TEs. Although the debate on climate tipping
points is fraught with uncertainty, our work suggests that, despite the potential temperature
increase from triggered carbon TEs, it is in the hands of the human society to steer the world
towards a sustainable future with limited global warming, which is necessary to significantly
reduce the risk of crossing climate tipping points.
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Appendix

Derivation of CTEM Formulation

To derive the discrete form of CTEM (eq. 5), we start by rewriting the logistic equation for
S (eq. 2)

dS

dt
= r

T

P
S − rT

PK
S2 (7)

We simplify this equation by defining a and b as

a := r
T

P
(8)

b :=
rT

PK
. (9)

With those definitions, we can rewrite eq. 7 as

dS

dt
= aS − bS2. (10)

We further define
u := S−1, (11)

which gives us

S = u−1,

dS

du
= −u−2du

dt
,

with which we can rewrite eq. 10 as

−u−2du

dt
= au−1 − bu−2. (12)

We multiply eq. 12 with −u2 and rearrange which gives us

du

dt
+ au = b. (13)

As eq. 13 is a Bernoulli differential equation, we know that an exact solution exists, which can
be derived analytically. Since output variables from FaIR such as T are treated as constant
between timesteps, this also holds for a and b which are calculated using eq. 8 and eq, 9 with
T = T (t− 1). Hence, eq. 13 is a Bernoulli differential equation with constant coefficients
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which can be solved with an integrating factor I defined as

I := eat.

We now multiply eq. 13 with I which yields

eat
du

dt
+ eatau = beat.

This equation is now integrated from t− 1 to t to give the new solution for u at t∫ t

t−1

eat
′ du

dt′
+ eat

′
au dt′ =

∫ t

t−1

beat
′
dt′.

The left-hand integral can now be solved using the chain rule

[
eat

′
u
]t
t−1

= b

∫ t

t−1

eat
′
dt′.

The right-hand integral can be solved directly, and we derive

eatU2 − ea(t−1)U1 =
b

a

(
eat − ea(t−1)

)
.

Here, u is a function of t but to prevent confusion of brackets, we write U2 for u(t) and U1

for u(t− 1). We simplify this equation by dividing by eat and defining ∆t := t− (t− 1)

U2 − e−a∆tU1 =
a

b

(
1− e−a∆t

)
.

Now, we resubstitute for u using eq. 11

S−1
2 − e−a∆tS−1

1 =
b

a

(
1− e−a∆t

)
,

which can be rewritten as

S2 =

(
e−a∆t

(
S−1
1 − b

a

)
+

b

a

)−1

.

Explicitly showing the time dependency of S, b and a, we derive the final form of eq. 5

S(t) =

(
e−a(t−1)∆t

(
S−1(t− 1)− b(t− 1)

a(t− 1)

)
+

b(t− 1)

a(t− 1)

)−1

.
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As explained in Sec.2.3, bars over t denote that the respective variable is treated as the
average value between two gridpoints, whereas variables without a bar over t are defined at
the gridpoints (Fig. 3).

Probability Distributions used by rriskDistributions

The rriskDistributions package chooses out of the following probability distributions: Normal,
Beta, Cauchy, Logistic, Student T, Chi-squared, Non-central Chi-squared, Exponential,
Fisher, Gamma, Log-normal, Continuous uniform, Weibull, Triangular, Gompertz, PERT,
Truncated normal.

Additional Plots

Figure 32: Probabilities of triggering the TEs until 2200 under SSP1-1.9. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
probability is crossed, with purple including carbon emissions from carbon TEs and black not.
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Figure 33: Probabilities of triggering the TEs until 2200 under SSP1-2.6. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
probability is crossed, with purple including carbon emissions from carbon TEs and black not.

Figure 34: Probabilities of triggering the TEs until 2200 under SSP2-4.5. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
and the 95% probability are crossed, with purple including carbon emissions from carbon TEs and
black not.
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Figure 35: Probabilities of triggering the TEs until 2200 under SSP3-7.0. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
and the 95% probability are crossed, with purple including carbon emissions from carbon TEs and
black not.

Figure 36: Probabilities of triggering the TEs until 2200 under SSP5-8.5. Additional probabilities
from the carbon TEs are marked in purple. The table underneath states the years in which the 50%
and the 95% probability are crossed, with purple including carbon emissions from carbon TEs and
black not.
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