Do climate models over-estimate cloud feedbacks?

Sandra Bony
CNRS, LMD/IPSL, Paris

with contributions from
Jessica Vial (LMD), David Coppin (LMD)
Florent Brient (ETH), Tobias Becker (MPI), Kevin Reed (NCAR)
Brian Medeiros (NCAR), Bjorn Stevens (MPI)

Grand Challenge Workshop on Climate Sensitivity, Ringberg, March 23-27 2015
Cloud feedbacks
Cloud feedbacks
Cloud feedbacks

Strength of the Mixing Induced Low Cloud (MILC) feedback?
Cloud feedbacks

Strength of the Mixing Induced Low Cloud (MILC) feedback?

Iris effect?
Do models over-estimate their (positive) low-cloud feedback? Miss a negative cloud feedback?
A negative high-cloud feedback associated with an Iris effect?

- Iris effect: expanding dry, clear areas in a warming climate.
- Negative LW feedback
- A strong Iris effect would reconcile models with observations in a number of aspects (low ECS, strong SW cloud feedback, strong HS, etc).
Is a negative cloud feedback associated with an Iris effect supported by cloud observations?
Zelinka and Hartmann (2011) show that when the tropical-mean SST rises during ENSO:

- high cloud fraction decreases (Iris-like effect)
- robust physical mechanism
- SW effects oppose LW effects, resulting in a statistically insignificant net high cloud feedback

Observational evidence for an Iris effect...

but not for a strong negative feedback associated with it
Zelinka and Hartmann (2011) show that when the tropical-mean SST rises during ENSO:

- high cloud fraction decreases (Iris-like effect)
- robust physical mechanism
- SW effects oppose LW effects, resulting in a statistically insignificant net high cloud feedback

Observational evidence for an Iris effect... but not for a strong negative feedback associated with it

Does it translate to climate change? Could other mechanisms lead to a stronger Iris effect? e.g. What if convective aggregation increases with temperature? as proposed by CRMs
Observational investigation of the radiative impact of changes in convective aggregation

For given large-scale forcings (including SST):

- The atmosphere is drier, clearer (RH, AIRS data)
- More efficient at radiating heat to space (OLR, CERES data)

Enhanced convective aggregation = Iris-like effect

Tobin, Bony & Roca, J. Climate 2012
Tobin et al., JAMES, 2013
Observational investigation of the radiative impact of changes in convective aggregation

For given large-scale forcings (including SST):

- The atmosphere is drier, clearer (RH, AIRS data)
- Less efficient at reflecting solar radiation (SW, CERES data)

Tobin, Bony & Roca, J. Climate 2012
Tobin et al., JAMES, 2013
Observational investigation of the radiative impact of changes in convective aggregation

For given large-scale forcings (including SST):

- the atmosphere is drier, clearer (RH, AIRS data)
- LW and SW changes compensate each other (NET, CERES data)

For a given SST: net TOA radiation seems insensitive to aggregation

Tobin, Bony & Roca, J. Climate 2012
Tobin et al., JAMES, 2013
Is a negative cloud feedback associated with an Iris effect supported by cloud observations?

There is evidence for an Iris effect

...but not for a negative cloud feedback associated with it (so far)

Could a change in convective organization with temperature affect this feedback? Remains to be investigated...
Is a negative cloud feedback associated with an Iris effect supported by cloud observations?

There is evidence for an Iris effect

...but not for a negative cloud feedback associated with it (so far)

Could a change in convective organization with temperature affect this feedback? Remains to be investigated...

Would GCMs be missing the effects of convective organization and its dependence on temperature?
GCMs run in Radiative-Convective Equilibrium

3D RCE:
- aqua-planet
- no rotation
- uniform insolation
- fixed, uniform SST

Like Cloud-Resolving Models:
- GCMs produce spontaneously a convective organization ("self-aggregation")
GCMs run in Radiative-Convective Equilibrium

3D RCE:
- aqua-planet
- no rotation
- uniform insolation
- fixed, uniform SST

Like Cloud-Resolving Models:
- GCMs produce spontaneously a convective organization ("self-aggregation")
- GCMs exhibit an enhanced aggregation of convection at high temperatures
Effect of rising surface temperatures

- Iris effect-like
- High Hydrological Sensitivity (4 %/K or more)
- Nearly neutral LW cloud feedback
 + Strong positive SW cloud feedback
 = *high Climate Sensitivity despite the Iris effect*

→ GCMs can produce an Iris-like effect due to changes in convective aggregation with T

→ But SW cloud feedbacks, especially those from low-level clouds, can easily oppose the LW negative feedback associated with the Iris effect
Low-cloud feedback

Controlled by two competing processes:
- moistening by surface turbulent fluxes
- drying by low-tropospheric mixing (shallow convection + shallow circulation)

Inter-model differences in the strength of low-tropospheric mixing explains about half of the variance in climate sensitivity (Sherwood et al. 2014).
Observational constraints on low-tropospheric (LT) mixing

Reanalyses suggest that LT mixing by the large-scale circulation is unrealistically weak in low-sensitivity models.

Observational constraints suggest a LT convective mixing near the middle of the GCM range.
Additional constraints on convective mixing?
Additional constraints on convective mixing?

In present-day climate:
- Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes

Nam, Bony, Dufresne and Chepfer, GRL, 2012
Additional constraints on convective mixing?

In present-day climate:
- Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes

γ: shallowness index

Brient, Schneider, Tan and Bony, submitted

Nam, Bony, Dufresne and Chepfer, GRL, 2012
Additional constraints on convective mixing?

In present-day climate:
- Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes
- The distribution correlates with the strength of low-tropospheric drying by convection
Additional constraints on convective mixing?

In present-day climate:
- Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes
- The distribution correlates with the strength of low-tropospheric drying by convection

Brient, Schneider, Tan and Bony, submitted

Nam, Bony, Dufresne and Chepfer, GRL, 2012
Additional constraints on convective mixing?

In present-day climate:
- Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes
- The distribution correlates with the strength of low-tropospheric drying by convection

Consistent with the constraint on convective mixing of Sherwood et al. (2014)
Conclusion

- No strong evidence (so far) that GCMs miss a negative cloud feedback associated with the Iris effect

- Process-oriented observational constraints suggest that lowest-sensitivity models under-estimate the positive low-cloud feedback

- Suggests that models with ECS lower than 3K are unlikely to be realistic

But the investigation should continue...
Thank You