contact: Hauke Schmidt

Most general circulation models of the middle atmosphere have their upper boundary in the 70-90 km region while “classical” models of the thermosphere/ionosphere mostly have their lower boundary near 80-95 km. HAMMONIA is one of the few models intended to overcome this separation. The model was developed at MPI-M, but with the contribution of scientists from other research institutions (V. Fomichev, York University, Canada; D. Kinnison, D. Marsh, S. Walters, NCAR). The model covers the atmospheric altitude range from the Earth's surface up to 1.7*10-7 hPa (about 250 km), which means not only tropo-, strato-, and mesosphere but also a considerable part of the thermosphere.

In the recent years HAMMONIA has been used for studies in a wide range of fields, covering the effects of solar variability and GHG increase, vertical coupling in the entire atmosphere, tidal activity, middle atmospheric wave activity in general, long-periodic oscillations in the mesosphere, the distribution of trace gases, etc. A list of publications where HAMMONIA simulations have been used is given at the bottom of this page.

A simple example for results obtained with HAMMONIA is given in the figure below. The left panel shows climatological zonal winds over the whole altitude range of the model domain with westerly winds in the winter strato- and mesosphere, easterlies at the same altitudes during summer, and a wind reversal around the mesopause. The right panel shows the same parameter obtained in a simulation with gravity waves switched off. The difference between the panels indicates the influence of small (sub-grid) scale gravity waves on the atmospheric circulation.

The following paragraph contains a brief description of the model. More details are given by Schmidt et al. (J. Climate, 2006). If you want to know more please contact Hauke Schmidt.

HAMMONIA consists of the vertical extension to the thermosphere of the MAECHAM5 model, which is itself an upward extension to the lower mesosphere of the ECHAM5 atmospheric GCM. HAMMONIA also comprises a full dynamic and radiative two-way coupling with the MOZART3 chemical module (Kinnison et al., JGR, 2007; 48 compounds, 148 gas phase reactions in the version used here). Ion chemistry is optional. HAMMONIA is a spectral model that has been run so far mainly in versions with triangular truncation at wavenumber 31 (T31) and with 67 or 119 vertical layers. The dynamical and radiative processes that have been specifically implemented for HAMMONIA include solar heating in the UV and EUV wavelength regime, a non-local thermodynamic equilibrium long-wave radiative scheme, heating and mixing due to parameterized gravity waves, vertical molecular diffusion and heat conduction, and parameterizations of electromagnetic forces in the thermosphere.

Publications related to HAMMONIA

  • Zülicke, C., E. Becker, V. Matthias, D. H. W. Peters, H. Schmidt, H.-L. Liu, L. de la Torre Ramos, D. M. Mitchell, Coupling of stratospheric warmings with mesospheric coolings in observations and simulations, J. Climate, accepted, 2017.
  • Funke, B., Ball, W., Bender, S., Gardini, A., Harvey, V., Lambert, A., Lopez-Puertas, M., Marsh, D., Meraner, K., Nieder, H., Paivarinta, S.-M., Perot, K., Randall, C., Reddmann, T., Rozanov, E., Schmidt, H., Seppala, A., Sinnhuber, M., Sukhodolov, T., Stiller, G., Tsvetkova, N., Verronen, P., Versick, S., von Clarmann, T., Walker, K. & Yushkov, V., HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009. Atmospheric Chemistry and Physics, 17, 3573-3604, 2017.
  • Meraner, K., Schmidt, H., Manzini, E., Funke, B. & Gardini, A., Sensitivity of simulated mesospheric transport of nitrogen oxides to parameterized gravity waves . Journal of Geophysical Research-Atmospheres, 121, 12,045-12,061, 2016.
  • Meraner, K. & Schmidt, H., Transport of Nitrogen Oxides through the winter mesopause in HAMMONIA. Journal of Geophysical Research-Atmospheres, 121, 2556-2570, 2016.
  • Pedatella, N., Fang, T.-W., Jin, H., Sassi, F., Schmidt, H., Chau, J., Siddiqui, T. & Goncharenko, L., Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming. Journal of Geophysical Research A: Space Physics, 121, 7204-7225, 2016.
  • Studer, S., Hocke, K., Schanz, A., Schmidt, H., & Kaempfer, N., A climatology of the diurnal variations in stratospheric and mesospheric ozone over Bern, Switzerland. Atmospheric Chemistry and Physics, 14, 5905-5919, 2014.
  • Pedatella, N. M., Fuller-Rowell, T., Wang, H., Jin, H., Miyoshi, Y., Fujiwara, H., Shinagawa, H., Liu, H.-L., Sassi, F., Schmidt, H., Matthias, V., & Goncharenko, L.: The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models. Journal of Geophysical Research: Space Physics, 119, 1306-1324, 2014.
  • Kishore Kumar, G., W. Singer, J. Oberheide, N. Grieger, P. P. Batista, D. M. Riggin, H. Schmidt, and B. R. Clemesha: Diurnal tides at low latitudes: Radar, satellite, and model results. J. Atmos. Sol.-Terr. Phys., 96, 96-105. 2014.
  • Miller, A., H. Schmidt, and F. Bunzel, Vertical coupling of the middle atmosphere during stratospheric warming events, J. Atmos. Sol.-Terr. Phys., 97, 2013.
  • Schmidt, H., J. Kieser, S. Misios, and A. N. Gruzdev: The atmospheric response to solar variability: Simulations with a general circulation and chemistry model for the entire atmosphere, in: F.-J. Luebken (ed.): Climate And Weather of the Sun-Earth System (CAWSES): Highlights from a priority program, Springer, Dordrecht, the Netherlands, 2013.
  • Savigny, C. v., K. U. Eichmann, C. E. Robert, J. P. Burrows, and M. Weber, Sensitivity of equatorial mesopause temperatures to the 27‐day solar cycle, Geophys. Res. Lett., 39, 2012.
  • Beig, G., S. Fadnavis, H. Schmidt, and G. P. Brasseur: Inter-comparison of 11-year solar cycle response in mesospheric ozone and temperature obtained by HALOE satellite data and HAMMONIA model, J. Geophys. Res., 117, D00P10, doi:10.1029/2011JD015697, 2012.
  • Kieser, J., The influence of precipitating solar and magnetospheric energetic charged particles on the entire atmosphere Simulations with HAMMONIA, PhD thesis, Univ. of Hamburg, Reports on Earth System Science , MPI for Meteorology, Hamburg, 2011.
  • Gabriel, A., H. Schmidt, and D.H.W. Peters: Effects of the 11-year solar cycle on middle atmospheric stationary wave patterns in temperature, ozone and water vapor, J. Geophys. Res., 116, D23301, doi:10.1029/2011JD015825, 2011.
  • Wissing, J. M., M.-B. Kallenrode, J. Kieser, H. Schmidt, M. T. Rietveld, A. Strømme, and P. J. Erickson: Atmospheric Ionization Module Osnabrück (AIMOS): 3. Comparison of electron density simulations by AIMOS-HAMMONIA and incoherent scatter radar measurements, J. Geophys. Res., 116, A08305, doi:10.1029/2010JA016300, 2011.
  • Pena-Ortiz, C., H. Schmidt, M. A. Giorgetta, M. Keller: The QBO modulation of the semiannual oscillation in MAECHAM5 and HAMMONIA, J. Geophys. Res., 115, D21106, doi:10.1029/2010JD013898, 2010.
  • Schmidt, H., G. P. Brasseur, M. A. Giorgetta: The solar cycle signal in a general circulation and chemistry model with internally generated QBO, J. Geophys. Res., 115, D00I14, doi:10.1029/2009JD012542, 2010.
  • Dikty, S., H. Schmidt, M. Weber, C. von Savigny, and M. G. Mlynczak: Daytime ozone and temperature variations in the mesosphere: a comparison between SABER observations and HAMMONIA model, Atmos. Chem. Phys., 10, 8331–8339, 2010.
  • She, C.-Y., D. A. Krueger, R. Akmaev, H. Schmidt, E. Talaat, and S. Yee: Long-term variability in mesopause region temperatures over Fort Collins, Colorado (41°N, 105°W) based on lidar observations from 1990 through 2007, J. Atm. Sol.-Terr. Phys., 71, 1558-1564, 2009.
  • Lossow, S., J. Urban, H. Schmidt, D. R. Marsh, J. Gumbel, P. Eriksson, and D. Murtagh: Wintertime water vapour in the polar upper mesosphere and lower thermosphere - First satellite observations by Odin/SMR, J. Geophys. Res., doi:10.1029/2008JD011462, D10304, 2009.
  • Gruzdev, A., H. Schmidt, G. P. Brasseur: The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a threedimensional chemistry-climate model, Atmos. Chem. Phys., 9, 595-614, 2009.
  • Offermann, D., O. Gusev, M.Donner, J.M.Forbes, M.Hagan, M.G.Mlynczak, J.Oberheide, P.Preusse, H.Schmidt, and J.M.Russell III: Relative Intensities of Middle Atmosphere Waves, J. Geophys. Res., 114, D06110, doi:10.1029/2008JD010662., 2009.
  • Yuan, T., H. Schmidt, C. Y. She, D. A. Krueger, S. Reising, Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature, zonal and meridional winds above Fort Collins, CO (40.6°N, 105°W), J. Geophys. Res., 113, D20103, doi:10.1029/2007JD009687, 2008.
  • Achatz, U., N. Grieger, and H. Schmidt: Mechanisms Controlling the Diurnal Solar Tide: Analysis Using a GCM and a Linear Model, J. Geophys. Res., 113, A08303, doi:10.1029/2007JA012967, 2008.
  • Yuan, T., C.-Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H.-L. Liu, and H. Schmidt: Climatology of mesopause region temperature, zonal wind and meridional wind over Fort Collins, CO (41ºN, 105ºW) and comparison with model simulations, J. Geophys. Res., 113, D03105, doi:10.1029/2007JD008697, 2008.
  • Offermann, D., M. Jarisch, H. Schmidt, J. Oberheide, K.U. Grossmann, O. Gusev, J.M. Russell III, and M.G. Mlynczak: The "wave turbopause", J. Atm. Sol.-Terr. Phys., 69, 2139-2158, doi:10.1016/j.jastp.2007.05.012, 2007.
  • Schmidt, H., G. P. Brasseur, M. Charron, E. Manzini, M. A. Giorgetta, T. Diehl, V. I. Fomichev, D. Kinnison, D. Marsh, and S. Walters: The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate, 19, 3903-3931, 2006.
  • Schmidt, H. and G. P. Brasseur: The response of the middle atmosphere to solar forcing in the Hamburg Model of the Neutral and Ionized Atmosphere. Space Sc. Rev., 125, 345-356, doi:10.1007/s11214-006-9068-z, 2006.