Herausforderungen und Motivation für die Entwicklung des ICON Atmosphärenmodells

Die Klimaforschung beruht auf Theorie, Beobachtungen und numerischen Modellen. Modelle spielen eine bedeutende Rolle, da mathematische Beschreibungen, die das Klimasystem darstellen sollen, nicht analytisch gelöst werden können. Ihre numerischen Lösungen ermöglichen es jedoch, zu untersuchen, wie verschiedene Prozesse das Klima und den Klimawandel beeinflussen. Numerische Modelle sind daher am Max-Planck-Institut für Meteorologie die erste Wahl, um die wesentlichen Prozesse im Klimasystem systematisch zu erforschen, durch Vergleich mit Beobachtungen wie auch durch die Erprobung alternativer Formulierungen für ausgewählte Prozesse. Hierzu gehören die vielfältigen Prozesse, die Wolken entstehen und verschwinden lassen oder in bestimmten Strukturen organisieren. Wolken existieren auf vielen Skalen, von kleinen Kumuluswolken, den sogenannten Schönwetterwolken, zu vertikal hochreichenden Gewitterwolken, zu ausgedehnten, durchscheinenden Zirruswolken an der Tropopause oder flächigen dichten Wolken in der unteren Atmosphäre, die sich über große Flächen ausdehnen. Jeder dieser Wolkentypen greift auf unterschiedliche Art und Weise ins Wettergeschehen ein. Das heißt, dass die Rolle der Wolken insgesamt im Klimasystem komplex ist, und auch für Beobachtungen und die Modellierung eine große Herausforderung darstellt.

Wolkenauflösende Simulation des 26. April 2013 für Deutschland, hergestellt mithilfe des hochauflösenden ICON Modells im Rahmen des HD(CP)2 Projektes.

Das unvollständige Verständnis der Wechselwirkung von Wolken und der Zirkulation ist ein wichtiger Faktor in der Unsicherheit der Klimasensitivität, die die finale, global gemittelte Erwärmung der bodennahen Atmosphäre nach einer Verdoppelung der CO2 Konzentration gegenüber den Bedingungen von 1850 angibt. Da sich die Klimasensitivität nicht beobachten lässt, kann sie nur aus globalen Klimasimulationen geschätzt werden und ist damit von der Güte der in den Modellen dargestellten Prozesse abhängig. Problematisch sind hierbei insbesondere die parametrisierten Prozesse, also die Formulierungen von Prozessen, die entweder räumlich nicht explizit aufgelöst werden können, oder deren zugrundeliegenden Gleichungen wenig bekannt sind. Aktuelle Klimamodelle haben typischerweise horizontale Auflösungen von ca. 100 km, womit z.B. Kumuluswolken nicht aufgelöst werden können. Deren Effekte wie vertikale Durchmischung der Atmosphäre, Umsetzung latenter Wärme, Niederschlag und Strahlungseffekte müssen daher anhand der aufgelösten Umgebungsbedingungen parametrisiert werden, was mit Unsicherheiten behaftet ist. Die Herausforderung für die Modellierung besteht darin,  solche Unsicherheiten zu reduzieren oder zu eliminieren. Ein möglicher Weg besteht darin, die Auflösung globaler Modelle zu steigern, so dass weniger Prozesse parametrisiert werden müssen. Dieser Weg wird praktisch durch die Stärke der Computersysteme und die mangelnde Fähigkeit der Klimamodelle, die stärksten Computersysteme ausreizen zu können, limitiert. Alternativ können feinskalige Modelle eingesetzt werden, die die Dynamik der Kumuluswolken in einer Region explizit auflösen und so zur genaueren Erforschung der Vorgänge innerhalb der Region genutzt werden können, woraus dann präzisere Parametrisierungen für globale Modelle abgeleitet werden können. Noch vorteilhafter wäre ein Modellsystem, das sich gleichermaßen für beide Wege eignet, und somit erlaubt, die verschiedenen zeitlichen und räumlichen Skalen in einem gemeinsamen Rahmen zu untersuchen. Um dies zu ermöglichen, wurde das ICON Modellsystem entwickelt, zu dem Komponenten für die Atmosphäre, das Land und den Ozean gehören. Nachfolgend wird das hochauflösende Atmosphärenmodell vorgestellt, in dem die Wolkenprozesse untersucht werden sollen.

Das ICON Atmosphärenmodell
Das ICON Atmosphärenmodell wurde gemeinsam mit dem Deutschen Wetterdienst (DWD) entwickelt, um ein gemeinsames Werkzeug zu schaffen, das sich gleichermaßen für die Klimaforschung und die Wettervorhersage eignet. Die Innovationen gegenüber den Vorgängermodellen ECHAM und GME am MPI-M bzw. DWD lassen sich in folgenden Punkten zusammenfassen:

•    Dynamik: Die Verwendung der nicht-hydrostatischen Bewegungsgleichungen erlaubt auch, kleinräumige Zirkulationen zu simulieren, wie z.B. die starken vertikalen Winde in konvektiven Wolken [1]. ECHAM und in GME wurden auf der Basis der hydrostatischen Gleichungen entwickelt, die rechnerisch einfacher und schneller zu lösen sind, aber davon ausgehen, dass vertikale Winde hinreichend genau aus den horizontalen Winden abgeleitet werden können und damit keiner eigenen Gleichung bedürfen, was nur für Auflösungen von ~10 km oder schlechter zutrifft. Diese Vereinfachung hat hinsichtlich des Rechenaufwandes den Vorteil, dass sie weniger Austausch mit parallelen Berechnungen benötigt.
•    Transport: Der Transport von Spurenstoffen, wie Wasserdampf oder Wolkenwasser, erfolgt massenerhaltend. Sowohl in ECHAM als auch GME wurde dies durch die numerischen Methoden nicht garantiert, sodass die kleinen numerischen Fehler Bilanzen von langlebigen Spurenstoffen beeinträchtigen konnten. Dieser Umstand ist bei Klimasimulationen, die über einen langen Zeitraum laufen, unerwünscht.
•    Parametrisierte Prozesse: Parametrisierungen wurden für drei Anwendungsfälle entwickelt: Klimasimulationen über Jahrzehnte mit Auflösungen von 40 bis 160 km, die numerische Wettervorhersage über ca. 10 Tage bei einer Auflösung von 13 km, und wolkenauflösende Simulationen über wenige Tage mit ca. 100 m Auflösung. Das ECHAM Modell war ausschließlich für Klimasimulationen entwickelt worden, und das GME Modell nur für Wettervorhersagen.
•    Räumliche Diskretisierung: Die Wahl von unstrukturierten Dreiecksgittern erlaubt maximale Flexibilität in der Gestaltung der Rechengebiete. Diese können Regionen oder den ganzen Globus abdecken (Abb. 1). ECHAM und GME können hingegen nur auf dem ganzen Globus gerechnet werden. Regionale Verfeinerungen sind nicht möglich.
•    Numerische Effizienz und Skalierbarkeit: Durch eine Kooperation mit dem Deutschen Klimarechenzentrum, und in Zusammenhang mit dem vom BMBF geförderten HD(CP)2 Projekt, konnte eine extrem hohe Parallelisierbarkeit des ICON Modells erreicht werden. Damit konnte in technischen Tests der zweitgrößte Computer Europas (Frühjahr 2015) – Opens external link in current windowJuqueen am Forschungszentrum Jülich – mit allen 458752 Rechenkernen effizient genutzt werden. Das alte ECHAM Modell konnte im Extremfall nur auf bis zu wenigen Tausend Kernen parallel rechnen.

 

Abb. 1: Beispiel eines globalen ICON Gitters mit zweifacher regionaler Verfeinerung. Das hellblaue Gitter zeigt das vom Ikosaeder definierte Basisgitter mit 20 dreieckigen Flächen, 30 Kanten und 12 Eckpunkten. Das dunkelblaue Gitter entstand durch eine erste Verfeinerung, in der die Kantenmittelpunkte neue Eckpunkte bilden. Die nächste Gitterverfeinerung wurde nur in der Nordhemisphäre durchgeführt, abgebildet im grünen Gitter. Ein weiterer Verfeinerungsschritt in einer Region über Europa führt dann zum roten Gitter.
© Max-Planck-Institut für Meteorologie

 

Validierung des wolkenauflösenden ICON Modells
Für die Validierung des ICON Modells in Large-Eddy-Simulationen (LES) bei horizontalen Auflösungen von 100 bis 25 m wurden im BMBF-geförderten Opens external link in current windowHD(CP)2 Projekt Referenzrechnungen für eine konvektive Grenzschicht ohne bzw. mit Wolkenbildung durchgeführt und mit Lösungen von spezialisierten LES Modellen verglichen [2]. Diese Tests sind auf die verwirbelte Grenzschicht fokussiert, deren mittlere vertikale Struktur (Abb. 2), wie auch die von den Wirbeln verursachten vertikalen turbulenten Transporte, vom ICON Modell sehr ähnlich wie in den zwei ebenfalls eingesetzten Referenzmodellen UCLA und PALM simuliert wird. Die Unsicherheiten in der Berechnung der Wolkenschicht (Abb. 2c), geschätzt in einem früheren Modellvergleich [3], ist wesentlich größer als die Differenzen zwischen ICON, UCLA und PALM.

Abb. 2: Mittlere vertikale Profile der (a) feucht-potentiellen Temperatur θl , (b) der spezifischen Feuchte qv und (c) des Wolkenwassergehalts ql in ICON (rot) und den zwei LES Modellen UCLA (blau) und PALM (grün). Für den Wolkenwasserbereich wird auch eine Unsicherheitsbandbreite aus einem früheren Modellvergleich für dieses Experiment gezeigt  [3].
Abbildungen 10a-c aus [2], © Max-Planck-Institut für Meteorologie

 

Erste wolkenauflösende Simulation über ganz Deutschland
Dieses validierte ICON Modell wurde nun im HD(CP)2 Projekt für wolkenauflösende Simulationen über einem ganz Deutschland abdeckenden Rechengebiet (Abb. 3) eingesetzt. Simulationen wurden für ausgewählte Tage durchgeführt, für die im HD(CP)2 Projekt in der sogenannten HOPE Beobachtungskampagne intensiv Beobachtungen zur atmosphärischen Struktur, Wolken und Niederschlag gesammelt wurden. Im Modell wurde ein zweifach verfeinertes regionales Gitter mit insgesamt 32 Millionen Zellen und 150 Schichten entwickelt. Das Grundgitter mit ca. 600 m Auflösung erhält die Randbedingungen von archivierten Vorhersagen, die der DWD mit dem regionalen COSMO-DE Modell mit einer Auflösung von 2,8 km gerechnet hatte. Im ICON Modell wurden dann diese Daten per Nesting auf die geringfügig kleineren 2. und 3. Gitter mit 300 bzw. 150 m Auflösung interpoliert und integriert. Abb. 4 stellt eine quantitativere Bewertung der regionalen Version des ICON-Modells dar. Sie zeigt die zeitliche Entwicklung der  Grenzschichthöhe am 24. April 2013 in der Umgebung von Jülich, mit Beobachtungsdaten von Lidar Instrumenten HALO (JOY) (Windlidar) und POLLY (LAC) (Aerosollidar) und Radiosonden (RS(KIT)), sowie von drei Modellen: ICON (ICON-LES(HOPE)), PALM (PALM), das mit vereinfachten Randbedingungen gerechnet wurde, und COSMO-DE (COSMO), woraus die Randbedingungen für ICON entnommen wurden. Da sich die Aerosolschichten in der Nacht von der Grenzschicht entkoppeln, stimmen die beiden Lidarmessungen nur tagsüber überein. Die Radiosondenmessungen zeigen vor allem nachmittags eine größere Höhe der Grenzschicht als die Lidarmessungen. Bei allen drei Modellen wird zwischen 9 und 15 UTC eine gute Übereinstimmung mit den Beobachtungen gefunden, wobei die ICON Simulation am nächsten zu den Windlidardaten liegt. Unterschiede gibt es aber in der Bildung und im Zerfall der Grenzschicht zwischen 6 und 9 UTC, bzw. 15 und 18 UTC. Hier zeigt nur ICON den schnellen Aufbau und den schnellen Zerfall wie in den zeitlich hoch aufgelösten Windlidarmessungen sichtbar. Damit sind diese ersten realistischen Simulationen vielversprechend für eine weiterführende Untersuchung der im HD(CP)2 Projekt realisierten Beobachtungen und ICON-Simulationen.

 

Abb. 3: Rechengebiete der Deutschlandsimulationen des HD(CP)2 Projekts: In der „Domain 1“ mit einer Auflösung von 600 m erhält das Modell die zeitlich und räumlich interpolierten Randbedingungen aus archivierten regionalen Vorhersagen des COSMO-DE Regionalmodells des DWD. „Domain 2“ und „Domain 3“ - mit Darstellung der Geländehöhe - haben Auflösungen von 300 und 150 m und sind durch ein Nesting mit „Domain 1“ bzw. „Domain 2“ verbunden. Die Hauptsimulation findet in der „Domain 3“ statt. © Max-Planck-Institut für Meteorologie

 

Abb. 4: Zeitlicher Verlauf der Grenzschichthöhe am 24. April 2013 in Lidar- und Radiosondenmessungen und  in der deutschlandweiten ICON-Simulationen (orange). Zusätzlich wird die Grenzschichthöhe im Wettervorhersagemodell COSMO-DE (blau) und in einer idealisierten Simulation mit PALM in einem kleineren Gebiet mit einer Auflösung von 50 m gezeigt.
© Max-Planck-Institut für Meteorologie


Zusammenfassung

Mit dem ICON Atmosphärenmodell wurde ein neues einzigartiges Modell entwickelt, das aufgrund der Gleichungen, Diskretisierungsmethoden und der Software-Struktur die Simulation von atmosphärischen Zirkulationen von der 100 m Skala bis zur planetaren Skala auf größten Supercomputern ermöglicht und zudem mit einem Ozeanmodell als Erdsystemmodell gekoppelt werden kann. Damit werden neue Horizonte für die direkte Untersuchung der Rolle selbst kleiner Wolken im globalen Klimasystem eröffnet, mit der Möglichkeit die Unsicherheitsfaktoren der Klimasensitivität genauer zu untersuchen. In einer ersten Anwendung wurden im HD(CP)2 Projekt erstmals wolkenauflösende Simulationen über ganz Deutschland gerechnet und erfolgreich mit neuen Beobachtungen verglichen.

Literaturhinweise
1.    Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M.
The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core.
Quarterly Journal of the Royal Meteorological Society, 2014
DOI: 10.1002/qj.2378
2.    Dipankar, A.; Stevens, B.; Heinze, R.; Moseley, C., Zängl, G.; Giorgetta, M.; Brdar, S.
Large eddy simulation using the general ciculation model ICON.
Journal of Advances in Modeling Earth Systems, 7, 2015
DOI: 10.1002/2015MS000431
3.    Siebesma, A. P.; Bretherton, C. S.; Brown, A.; Chlond, A.; Cuxart, J.; Duynkerke, P. G.; Jiang, H.; Khairoutdinov, M.; Lewellen, D.; Moeng, C.-H.; Sanchez, E.; Stevens, B.; Stevens, D. E.
A large eddy simulation intercomparison study of shallow cumulus convection
Journal of the Atmospheric Sciences, 60, 1201–1219, 2003.

Kontakt
Dr. Marco Giorgetta
Max-Planck-Institut für Meteorologie
Opens window for sending emailmarco.giorgetta@we dont want spammpimet.mpg.de
Tel.: +49-40-41173-358